Skip to main content

Advertisement

Log in

Microfluidic Synthesis of PEG- and Folate-Conjugated Liposomes for One-Step Formation of Targeted Stealth Nanocarriers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

A microfluidic hydrodynamic flow focusing technique enabling the formation of small and nearly monodisperse liposomes is investigated for continuous-flow synthesis of poly(ethylene glycol) (PEG)-modified and PEG-folate-functionalized liposomes for targeted drug delivery.

Methods

Controlled laminar flow in thermoplastic microfluidic devices facilitated liposome self-assembly from initial lipid compositions including lipid/cholesterol mixtures containing PEG-lipid and folate-PEG-lipid conjugates. Relationships among flow conditions, lipid composition, and liposome size were evaluated; their impact on PEG and folate incorporation were determined through a combination of UV–vis absorbance measurements and characterization of liposome zeta potential.

Results

PEG and folate were successfully incorporated into microfluidic-synthesized liposomes over the full range of liposome sizes studied. Efficiency of PEG-lipid incorporation was inversely correlated with liposome diameter. Folate-lipid was effectively integrated into liposomes at various flow conditions.

Conclusions

Liposomes incorporating relatively large PEG-modified and folate-PEG-modified lipids were successfully synthesized using the microfluidic flow focusing platform, providing a simple, low cost, rapid method for preparing functionalized liposomes. Relationships between preparation conditions and PEG or folate-PEG functionalization have been elucidated, providing insight into the process and defining paths for optimization of the microfluidic method toward the formation of functionalized liposomes for pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AF4 :

asymmetric flow field-flow fractionation

Cryo-TEM:

cryogenic temperature transmission electron microscopy

DCP:

dihexadecyl phosphate

DMPC:

1,2-dimyristoyl-sn-glycero-3-phosphocholine

DSPE-PEG2000-folate:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[folate(PEG)-2000]

FPL:

folate–PEG-modified liposomes

FR:

folate receptor

FRR:

flow rate ratio

FWHM:

full width at half maximum

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

MALLS:

multiangle laser light scattering

PEG:

poly(ethylene glycol)

PEG2000-PE:

1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(PEG)-2000]

PEG5000-PE:

1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(PEG)-5000

PL:

PEG-modified (PEGylated)

QELS:

quasi-elastic light scattering

REFERENCES

  1. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  PubMed  CAS  Google Scholar 

  2. O’Shaughnessy J. Liposomal anthracyclines for breast cancer: overview. Oncologist. 2003;8 Suppl 2:1–2.

    Article  PubMed  Google Scholar 

  3. Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002;6(4):466–71.

    Article  PubMed  CAS  Google Scholar 

  4. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.

    Article  PubMed  CAS  Google Scholar 

  5. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.

    Article  PubMed  CAS  Google Scholar 

  6. Forssen E, Willis M. Ligand-targeted liposomes. Adv Drug Deliv Rev. 1998;29(3):249–71.

    Article  PubMed  CAS  Google Scholar 

  7. Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv. 2008;5(3):309–19.

    Article  PubMed  CAS  Google Scholar 

  8. Jesorka A, Orwar O. Liposomes: technologies and analytical applications. Annu Rev Anal Chem. 2008;1(1):801–32.

    Article  CAS  Google Scholar 

  9. Ishida T, Harashima H, Kiwada H. Liposome clearance. Biosci Rep. 2002;22:197–224.

    Article  PubMed  CAS  Google Scholar 

  10. Litzinger DC, Buiting AM, Van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta. 1994;1190:99–107.

    Article  PubMed  CAS  Google Scholar 

  11. Nagayasu, Uchiyama, Kiwada. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev. 1999;40(1–2):75–87.

    Article  PubMed  CAS  Google Scholar 

  12. Ramachandran S, Quist AP, Kumar S, Lal R. Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir. 2006;22:8156–62.

    Article  PubMed  CAS  Google Scholar 

  13. Uster PS, Allen TM, Daniel BE, Mendez CJ, Newman MS, Zhu GZ. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett. 1996;386(2–3):243–6.

    Article  PubMed  CAS  Google Scholar 

  14. Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, et al. Targeted nanoparticles for cancer therapy. Nano Today. 2007;2(3):14–21.

    Article  Google Scholar 

  15. Jahn A, Vreeland WN, Gaitan M, Locascio LE. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc. 2004;126:2674–5.

    Article  PubMed  CAS  Google Scholar 

  16. Jahn A, Vreeland W, DeVoe DL, Locascio L, Gaitan M. Microfluidic directed self-assembly of liposomes of controlled size. Langmuir. 2007;23:6289–93.

    Article  PubMed  CAS  Google Scholar 

  17. Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano. 2010;4(4):2077–87.

    Article  PubMed  CAS  Google Scholar 

  18. Nakashima-Matsushita N, Homma T, Yu S, Matsuda T, Sunahara N, Nakamura T, et al. Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum. 1999;42(8):1609–16.

    Article  PubMed  CAS  Google Scholar 

  19. Hansen MJ, Low PS. Folate receptor positive macrophages: cellular targets for imaging and therapy of inflammatory and autoimmune diseases. In: Jackman AL, Leamon CP, editors. New York, NY: Springer New York; 2011. p. 181–93.

  20. Somasundaran P, editor. Encyclopedia of surface and colloid science, Second ed. Taylor & Francis; 2006.

  21. Zook JM, Vreeland WN. Effects of temperature, acyl chain length, and flow-rate ratio on liposome formation and size in a microfluidic hydrodynamic focusing device. Soft Matter. 2010;6(6):1352.

    Article  CAS  Google Scholar 

  22. Yilmaz H. Excess properties of alcohol—water systems at 298.15 K. Turk J Phys. 2002;26:243–6.

    CAS  Google Scholar 

  23. Mitchell HK. Folic acid. IV. Absorption spectra. J Am Chem Soc. 1944;66(2):274–8.

    Article  CAS  Google Scholar 

  24. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nature reviews. Drug Discov. 2005;4(2):145–60.

    Article  CAS  Google Scholar 

  25. Edwards KA, Baeumner AJ. Analysis of liposomes. Talanta. 2006;68(5):1432–41.

    Article  PubMed  CAS  Google Scholar 

  26. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006;23(7):1417–50.

    Google Scholar 

  27. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm Official Journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik eV. 2008;69(1):1–9.

    Article  CAS  Google Scholar 

  28. Lasic DD. Liposomes: from physics to applications. Amsterdam; New York: Elsevier; 1993.

  29. Rosano TG. Methanol and isopropanol toxicology with clinical applications [Internet]. Am Assoc Clin Chem. 2011. Available from: http://www.aacc.org/events/online_progs/Documents/Methanol-Isopropanol_revised.pdf.

  30. Montesano G, Bartucci R, Belsito S, Marsh D, Sportelli L. Lipid membrane expansion and micelle formation by polymer-grafted lipids: scaling with polymer length studied by spin-label electron spin resonance. Biophys J. 2001;80(3):1372–83. Elsevier.

    Article  PubMed  CAS  Google Scholar 

  31. De Gennes PG. Conformations of polymers attached to an interface. Macromolecules. 1980;13(5):1069–75.

    Article  Google Scholar 

  32. Almgren M, Edwards K, Karlsson G. Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf, A Physicochem Eng Asp. 2000;174(1–2):3–21.

    Article  CAS  Google Scholar 

  33. Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta Rev Biomembr. 2000;1469(3):159–95.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Cryo-TEM imaging was performed at the Nanoscale Imaging, Spectroscopy, and Properties (NISP) Laboratory of the Maryland NanoCenter at the University of Maryland, College Park. This research was supported by NIH grants R21EB011750 and R21EB009485, NSF grant CBET0966407, NIST-ARRA Fellowship Program administered by the University of Maryland, and the NRC Research Associateship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don L. DeVoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hood, R.R., Shao, C., Omiatek, D.M. et al. Microfluidic Synthesis of PEG- and Folate-Conjugated Liposomes for One-Step Formation of Targeted Stealth Nanocarriers. Pharm Res 30, 1597–1607 (2013). https://doi.org/10.1007/s11095-013-0998-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0998-3

KEY WORDS

Navigation