Skip to main content
Log in

The Antitumor Effect of a New Docetaxel-Loaded Microbubble Combined with Low-Frequency Ultrasound In Vitro: Preparation and Parameter Analysis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a novel docetaxel (DOC)-loaded lipid microbubbles (MBs) for achieving target therapy and overcoming the poor water-solubility drawback of DOC.

Methods

A novel DOC-loaded microbubble (DOC + MB) was prepared by lyophilization and the physicochemical properties including ultrasound contrast imaging of the liver were measured. The anti-tumor effect of the DOC + MBs combined with low-frequency ultrasound (LFUS; 0.8Hz, 2.56 W/cm2, 50% cycle duty) on the DLD-1 cancer cell line was examined using an MTT assay.

Results

The physicochemical properties of the two tested formats of DOC + MBs (1.0 mg and 1.6 mg) was shown: concentration, (6.74 ± 0.02) × 108 bubbles/mL and (8.27 ± 0.15) × 108 bubbles/mL; mean size, 3.296 ± 0.004 μm and 3.387 ± 0.005 μm; pH value, 6.67 ± 0.11 and 6.56 ± 0.05; release rate, 3.41% and 12.50%; Zeta potential, −37.95 ± 7.84 mV and −44.35 ± 8.70 mV; and encapsulation efficiency, 54.9 ± 6.21% and 46.3 ± 5.69%, respectively. Compared with SonoVue, the DOC + MBs similarly enhanced the echo signal of the liver imaging. The anti-tumor effect of the DOC + MBs/LFUS group was significantly better than that of DOC alone and that of the normal MBs/LFUS groups.

Conclusions

The self-made DOC + MBs have potential as a new ultrasound contrast agent and drug-loaded microbubble, and can obviously enhance the antitumor effect of DOC under LFUS exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DOC:

docetaxel

DOC + MB:

docetaxel-loaded microbubble

IR:

inhibitory rate

LFUS:

low-frequency ultrasound

MB:

microbubble

NMB:

normal microbubble

NS:

normal saline

PTX:

paclitaxel

PBS:

phosphate buffer saline

RP-HPLC:

reverse-phase liquid chromatography

TtoPk:

time to peak

TIC:

time intensity curve

UCA:

ultrasound contrast agent

US:

ultrasound

References

  1. Zhao P, Dai M, Chen W, Li N. Cancer trends in China. Jpn J Clin Oncol. 2010;40(4):281–5.

    Article  PubMed  Google Scholar 

  2. Baeuerle PA, Itin C. Clinical experience with gene therapy and bispecific antibodies for T cell-based therapy of cancer. Curr Pharm Biotechnol. 2012;13(8):1399–408.

    Article  PubMed  CAS  Google Scholar 

  3. Anwer K, Kao G, Proctor B, Anscombe I, Florack V, Earls R, et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther. 2000;7(21):1833–9.

    Article  PubMed  CAS  Google Scholar 

  4. Yan F, Li X, Jin Q, Jiang C, Zhang Z, Ling T, et al. Therapeutic ultrasonic microbubbles carrying paclitaxel and LyP-1 peptide: preparation, characterization and application to ultrasound-assisted chemotherapy in breast cancer cells. Ultrasound Med Biol. 2011;37(5):768–79.

    Article  PubMed  Google Scholar 

  5. Kang J, Wu X, Wang Z, Ran H, Xu C, Wu J, et al. Antitumor effect of docetaxel-loaded lipid microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors. J Ultrasound Med. 2010;29(1):61–70.

    PubMed  Google Scholar 

  6. Waite CL, Roth CM. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit Rev Biomed Eng. 2012;40(1):21–41.

    Article  PubMed  Google Scholar 

  7. Guarneri V, Dieci MV, Conte P. Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer. Expert Opin Pharmacother. 2012;13(3):395–406.

    Article  PubMed  CAS  Google Scholar 

  8. Collins-Gold L, Lyons R, Bartholow L. Parenteral emulsions for drug delivery. Adv Drug Deliv Rev. 1990;5(3):189–208.

    Article  CAS  Google Scholar 

  9. Harris JD, Gutierrez AA, Hurst HC, Sikora K, Lemoine NR. Gene therapy for cancer using tumour-specific prodrug activation. Gene Ther. 1994;1(3):170–5.

    PubMed  CAS  Google Scholar 

  10. Kato T, Sato K, Sasaki R, Kakinuma H, Moriyama M. Targeted cancer chemotherapy with arterial microcapsule chemoembolization: review of 1013 patients. Cancer Chemother Pharmacol. 1996;37(4):289–96.

    Article  PubMed  CAS  Google Scholar 

  11. Luo G, Yu X, Jin C, Yang F, Fu D, Long J, et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm. 2010;385(1–2):150–6.

    Article  PubMed  CAS  Google Scholar 

  12. O’Shaughnessy JA. Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin Breast Cancer. 2003;4(5):318–28.

    Article  PubMed  Google Scholar 

  13. Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4(3):95–9.

    Article  PubMed  CAS  Google Scholar 

  14. Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed. 2003;42(28):3218–35.

    Article  CAS  Google Scholar 

  15. Tartis MS, McCallan J, Lum AFH, LaBell R, Stieger SM, Matsunaga TO, et al. Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol. 2006;32(11):1771–80.

    Article  PubMed  Google Scholar 

  16. Zhou X, Qin H, Li J, Wang B, Wang C, Liu Y, et al. Platelet-targeted microbubbles inhibit re-occlusion after thrombolysis with transcutaneous ultrasound and microbubbles. Ultrasonics. 2011;51(3):270–4.

    Article  PubMed  CAS  Google Scholar 

  17. Lentacker I, De Smedt SC, Sanders NN. Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter. 2009;5(11):2161–70.

    Article  CAS  Google Scholar 

  18. Barnett S. Nonthermal issues: cavitation–its nature, detection and measurement. Ultrasound Med Biol. 1998;24:S11–21.

    Article  Google Scholar 

  19. Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release. 2006;114(1):89–99.

    Article  PubMed  CAS  Google Scholar 

  20. Engels FK, Mathot RAA, Verweij J. Alternative drug formulations of docetaxel: a review. Anti Cancer Drugs. 2007;18(2):95.

    Article  PubMed  CAS  Google Scholar 

  21. Frenkel PA, Chen S, Thai T, Shohet RV, Grayburn PA. DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol. 2002;28(6):817–22.

    Article  PubMed  Google Scholar 

  22. Michaud LB, Valero V, Hortobagyi G. Risks and benefits of taxanes in breast and ovarian cancer. Drug Saf. 2000;23(5):401–28.

    Article  PubMed  CAS  Google Scholar 

  23. Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995;332(15):1004.

    Article  PubMed  CAS  Google Scholar 

  24. Cortes JE, Pazdur R. Docetaxel. J Clin Oncol. 1995;13(10):2643–55.

    PubMed  CAS  Google Scholar 

  25. Sanli UA, Uslu R, Karabulut B, Sezgin C, Saydam G, Omay SB, et al. Which dosing scheme is suitable for the taxanes? An in vitro model. Arch Pharm Res. 2002;25(4):550–5.

    Article  PubMed  CAS  Google Scholar 

  26. Ren ST, Zhang H, Wang YW, Jing BB, Li YX, Liao YR, et al. The preparation of a new self-made microbubble-loading urokinase and its thrombolysis combined with low-frequency ultrasound in vitro. Ultrasound Med Biol. 2011;37(11):1828–37.

    Article  PubMed  Google Scholar 

  27. Schneider M. Characteristics of SonoVuetrade mark. Echocardiography. 1999;16(7, Pt 2):743–6.

    Article  PubMed  Google Scholar 

  28. Sirsi S, Borden M. Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol. 2009;1(1–2):3–17.

    Article  PubMed  CAS  Google Scholar 

  29. Duncan PB, Needham D. Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: effect of surface tension and gas undersaturation in solution. Langmuir. 2004;20(7):2567–78.

    Article  PubMed  CAS  Google Scholar 

  30. Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu Y. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol. 1998;33(12):886–92.

    Article  PubMed  CAS  Google Scholar 

  31. Cochran MC, Eisenbrey J, Ouma RO, Soulen M, Wheatley MA. Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm. 2011;414(1–2):161–70.

    Article  PubMed  CAS  Google Scholar 

  32. Tinkov S, Bekeredjian R, Winter G, Coester C. Microbubbles as ultrasound triggered drug carriers. J Pharm Sci. 2009;98(6):1935–61.

    Article  PubMed  CAS  Google Scholar 

  33. Talu E, Hettiarachchi K, Zhao S, Powell RL, Lee AP, Longo ML, et al. Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging. Mol Imaging. 2007;6(6):384–92.

    PubMed  Google Scholar 

  34. Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA, editors. Ultrasound-microbubble-mediated drug delivery efficacy and cell viability depend on microbubble radius and ultrasound frequency 2010: IEEE International Ultrasonics Symposium Proceedings.

  35. Klibanov AL. Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med Biol Eng Comput. 2009;47(8):875–82.

    Article  PubMed  Google Scholar 

  36. Fisher NG, Christiansen JP, Klibanov A, Taylor RP, Kaul S, Lindner JR. Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol. 2002;40(4):811–9.

    Article  PubMed  CAS  Google Scholar 

  37. Wang B, Wang L, Zhou XB, Liu YM, Wang M, Qin H, et al. Thrombolysis effect of a novel targeted microbubble with low-frequency ultrasound in vivo. Thromb Haemost. 2008;100(2):356–61.

    PubMed  CAS  Google Scholar 

  38. Daffertshofer M, Gass A, Ringleb P, Sitzer M, Sliwka U, Els T, et al. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke. 2005;36(7):1441–6.

    Article  PubMed  Google Scholar 

  39. Jenne JW, Preusser T, Gunther M. High-intensity focused ultrasound: principles, therapy guidance, simulations and applications. Z Med Phys. 2012 Aug 9.

  40. Feril Jr LB, Kondo T. Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat Res. 2004;45(4):479–89.

    Article  PubMed  Google Scholar 

  41. Feril Jr LB, Kondo T. Major factors involved in the inhibition of ultrasound-induced free radical production and cell killing by pre-sonication incubation or by high cell density. Ultrason Sonochem. 2005;12(5):353–7.

    Article  PubMed  CAS  Google Scholar 

  42. Tachibana K, Feril Jr LB, Ikeda-Dantsuji Y. Sonodynamic therapy. Ultrasonics. 2008;48(4):253–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors would like to thank Hua-Sheng Liu, Ph.D. and Jiang-Wei Liang for helps in the experiment. The present study was supported by the Scientific Technology Planning Foundation of Shaanxi Province (No.2010K12-01, 2011K12-56), Province Ministry Graveness Engineering Program (No.2009ZDKG-20; No.2008ZDKG-60, 2007ZDKG-290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Wang.

Additional information

Shu-Ting Ren and Yi-Ran Liao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, ST., Liao, YR., Kang, XN. et al. The Antitumor Effect of a New Docetaxel-Loaded Microbubble Combined with Low-Frequency Ultrasound In Vitro: Preparation and Parameter Analysis. Pharm Res 30, 1574–1585 (2013). https://doi.org/10.1007/s11095-013-0996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0996-5

Key words

Navigation