Skip to main content
Log in

Co-transfection Gene Delivery of Dendritic Cells Induced Effective Lymph Node Targeting and Anti-tumor Vaccination

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Successful genetically engineered Dendritic Cell (DC) can enhance DC’s antigen presentation and lymph node migration. The present study aims to genetically engineer a DC using an efficient non-viral gene delivery vector to induce a highly efficient antigen presentation and lymph node targeting in vivo.

Methods

Spermine-dextran (SD), a cationic polysaccharide vector, was used to prepare a gene delivery system for DC engineering. Transfection efficiency, nuclear trafficking, and safety of the SD/DNA complex were evaluated. A vaccine prepared by engineering DC with SD/gp100, a plasmid encoding melanoma-associated antigen, was injected subcutaneously into mice to evaluate the tumor suppression. The migration of the engineered DCs was also evaluated in vitro and in vivo.

Results

SD/DNA complex has a better transfection behavior in vitro than commercially purchased reagents. The DC vaccine co-transfected with plasmid coding CCR7, a chemokine receptor essential for DC migration, and plasmid coding gp100 displayed superior tumor suppression than that with plasmid coding gp100 alone. Migration assay demonstrated that DC transfected with SD/CCR7 can promote DC migration capacity.

Conclusions

The study is the first to report the application of nonviral vector SD to co-transfect DC with gp100 and CCR7-coding plasmid to induce both the capacity of antigen presentation and lymph node targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

antigen presenting cell

CCL21:

C-C Chemokine ligand 21

CCR7:

C-C chemokine receptor type7

CLSM:

confocal laser scanning microscopy

DC:

dendritic cell

EGFP:

enhanced green fluorescent protein

FITC:

fluorescein isothiocyanate

GM-CSF:

granulocyte-macrophage colony stimulating factor

MHC:

major histocompatibility complex

MβCD:

methyl-β-cyclodextrin

PI:

propidium iodide

SD:

spermine-dextran

TAA:

tumor associated antigen

REFERENCES

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  2. Palena C, Abrams SI, Schlom J, Hodge JW. Cancer vaccines: preclinical studies and novel strategies. Adv Cancer Res. 2006;95:115–45.

    Article  PubMed  CAS  Google Scholar 

  3. Hinz T, Buchholz CJ, van der Stappen T, Cichutek K, Kalinke U. Manufacturing and quality control of cell-based tumor vaccines: a scientific and a regulatory perspective. J Immunother. 2006;29(5):472–6.

    Article  PubMed  Google Scholar 

  4. Dhodapkar MV, Dhodapkar KM, Palucka AK. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ. 2008;15(1):39–50.

    Article  PubMed  CAS  Google Scholar 

  5. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  6. Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med. 1990;172(2):631–40.

    Article  PubMed  CAS  Google Scholar 

  7. Paczesny S, Ueno H, Fay J, Banchereau J, Palucka AK. Dendritic cells as vectors for immunotherapy of cancer. Semin Cancer Biol. 2003;13(6):439–47.

    Article  PubMed  CAS  Google Scholar 

  8. Rughetti A, Biffoni M, Sabbatucci M, Rahimi H, Pellicciotta I, Fattorossi A, et al. Transfected human dendritic cells to induce antitumor immunity. Gene Ther. 2000;7(17):1458–66.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang X, Gordon JR, Xiang J. Advances in dendritic cell-based vaccine of cancer. Cancer Biother Radiopharm. 2002;17(6):601–19.

    Article  PubMed  CAS  Google Scholar 

  10. Srinivas R, Garu A, Moku G, Agawane SB, Chaudhuri A. A long-lasting dendritic cell DNA vaccination system using lysinylated amphiphiles with mannose-mimicking head-groups. Biomaterials. 2012;33(26):6220–9.

    Article  PubMed  CAS  Google Scholar 

  11. Markov OO, Mironova NL, Maslov MA, Petukhov IA, Morozova NG, Vlassov VV, et al. Novel cationic liposomes provide highly efficient delivery of DNA and RNA into dendritic cell progenitors and their immature offsets. J Control Release. 2012;160(2):200–10.

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki R, Oda Y, Utoguchi N, Namai E, Taira Y, Okada N, et al. A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy. J Control Release. 2009;133(3):198–205.

    Article  PubMed  CAS  Google Scholar 

  13. Chen YZ, Yao XL, Tabata Y, Nakagawa S, Gao JQ. Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol. 2010;2010:565643.

    Article  PubMed  Google Scholar 

  14. Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol. 2005;5(8):617–28.

    Article  PubMed  CAS  Google Scholar 

  15. Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M. Enhanced transfection efficiency into macrophages and dendritic cells by a combination method using mannosylated lipoplexes and bubble liposomes with ultrasound exposure. Hum Gene Ther. 2010;21(1):65–74.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshida M, Jo J, Tabata Y. Augmented anti-tumor effect of dendritic cells genetically engineered by interleukin-12 plasmid DNA. J Biomater Sci Polym Ed. 2010;21(5):659–75.

    Article  PubMed  CAS  Google Scholar 

  17. Smits EL, Anguille S, Cools N, Berneman ZN, Van Tendeloo VF. Dendritic cell-based cancer gene therapy. Hum Gene Ther. 2009;20(10):1106–18.

    Article  PubMed  CAS  Google Scholar 

  18. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–71.

    Article  PubMed  Google Scholar 

  19. Okada N, Mori N, Koretomo R, Okada Y, Nakayama T, Yoshie O, et al. Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction. Gene Ther. 2005;12(2):129–39.

    Article  PubMed  CAS  Google Scholar 

  20. Hosseinkhani H, Azzam T, Tabata Y, Domb AJ. Dextran-spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther. 2004;11(2):194–203.

    Article  PubMed  CAS  Google Scholar 

  21. Okada N, Masunaga Y, Okada Y, Mizuguchi H, Iiyama S, Mori N, et al. Dendritic cells transduced with gp100 gene by RGD fiber-mutant adenovirus vectors are highly efficacious in generating anti-B16BL6 melanoma immunity in mice. Gene Ther. 2003;10(22):1891–902.

    Article  PubMed  CAS  Google Scholar 

  22. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223(1):77–92.

    Article  PubMed  CAS  Google Scholar 

  23. Rivas-Caicedo A, Soldevila G, Fortoul TI, Castell-Rodriguez A, Flores-Romo L, Garcia-Zepeda EA. Jak3 is involved in dendritic cell maturation and CCR7-dependent migration. PLoS One. 2009;4(9):e7066.

    Article  PubMed  Google Scholar 

  24. Kee SH, Cho EJ, Song JW, Park KS, Baek LJ, Song KJ. Effects of endocytosis inhibitory drugs on rubella virus entry into VeroE6 cells. Microbiol Immunol. 2004;48(11):823–9.

    PubMed  CAS  Google Scholar 

  25. Walsh M, Tangney M, O’Neill MJ, Larkin JO, Soden DM, McKenna SL, et al. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-l-lysine compacted DNA: implications for cancer gene therapy. Mol Pharm. 2006;3(6):644–53.

    Article  PubMed  CAS  Google Scholar 

  26. Benard A, Boue J, Chapey E, Jaume M, Gomes B, Dietrich G. Delta opioid receptors mediate chemotaxis in bone marrow-derived dendritic cells. J Neuroimmunol. 2008;197(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  27. Nagane K, Jo J, Tabata Y. Promoted adipogenesis of rat mesenchymal stem cells by transfection of small interfering RNA complexed with a cationized dextran. Tissue Eng Part A. 2010;16(1):21–31.

    Article  PubMed  CAS  Google Scholar 

  28. Jo J, Nagaya N, Miyahara Y, Kataoka M, Harada-Shiba M, Kangawa K, et al. Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Eng. 2007;13(2):313–22.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang ZM, Zhang FH, Wang XM, Zhang C, Liu J, Gu LM, et al. Enhanced expression of CD40L cDNA on ovarian cancer cell line OVHM induces the secretion of Th1 cytokines from dendritic cells. Zhonghua Zhong Liu Za Zhi. 2008;30(3):174–8.

    PubMed  CAS  Google Scholar 

  30. Peng P, Shen K, He W, Wu M, Wei W, Lang JH, et al. Primary study on fusions of ovarian carcinoma cells to dendritic cell transfected with interleukin-12 gene in vitro. Zhonghua Fu Chan Ke Za Zhi. 2006;41(1):57–61.

    PubMed  Google Scholar 

  31. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.

    Article  PubMed  CAS  Google Scholar 

  32. Gumbleton M, Abulrob AG, Campbell L. Caveolae: an alternative membrane transport compartment. Pharm Res. 2000;17(9):1035–48.

    Article  PubMed  CAS  Google Scholar 

  33. Silva W, Maldonado H, Chompre G, Mayol N. Caveolae a new subcellular transport organelle. Bol Asoc Med P R. 1998;90(1–3):30–3.

    PubMed  CAS  Google Scholar 

  34. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A. 1994;91(14):6458–62.

    Article  PubMed  CAS  Google Scholar 

  35. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL, et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci U S A. 1994;91(9):3515–9.

    Article  PubMed  CAS  Google Scholar 

  36. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4(3):321–7.

    Article  PubMed  CAS  Google Scholar 

  37. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4(3):328–32.

    Article  PubMed  CAS  Google Scholar 

  38. Coulie PG, Brichard V, Van Pel A, Wolfel T, Schneider J, Traversari C, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1994;180(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  39. Zhai Y, Yang JC, Kawakami Y, Spiess P, Wadsworth SC, Cardoza LM, et al. Antigen-specific tumor vaccines. Development and characterization of recombinant adenoviruses encoding MART1 or gp100 for cancer therapy. J Immunol. 1996;156(2):700–10.

    PubMed  CAS  Google Scholar 

  40. Perricone MA, Claussen KA, Smith KA, Kaplan JM, Piraino S, Shankara S, et al. Immunogene therapy for murine melanoma using recombinant adenoviral vectors expressing melanoma-associated antigens. Mol Ther. 2000;1(3):275–84.

    Article  PubMed  CAS  Google Scholar 

  41. Zhai Y, Yang JC, Spiess P, Nishimura MI, Overwijk WW, Roberts B, et al. Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100. J Immunother. 1997;20(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  42. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med. 1999;189(3):451–60.

    Article  PubMed  CAS  Google Scholar 

  43. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell. 1999;99(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  44. Prabha S, Sharma B, Labhasetwar V. Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice. Cancer Gene Ther. 2012;19(8):530–7.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang B, Jia F, Fleming MQ, Mallapragada SK. Injectable self-assembled block copolymers for sustained gene and drug co-delivery: an in vitro study. Int J Pharm. 2012;427(1):88–96.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang SN, Choi IK, Huang JH, Yoo JY, Choi KJ, Yun CO. Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther. 2011;19(8):1558–68.

    Article  PubMed  CAS  Google Scholar 

  47. Zaharoff DA, Hance KW, Rogers CJ, Schlom J, Greiner JW. Intratumoral immunotherapy of established solid tumors with chitosan/IL-12. J Immunother. 2010;33(7):697–705.

    Article  PubMed  CAS  Google Scholar 

  48. Yang RK, Kalogriopoulos NA, Rakhmilevich AL, Ranheim EA, Seo S, Kim K, et al. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention. J Immunol. 2012;189(5):2656–64.

    Article  PubMed  CAS  Google Scholar 

  49. Yang HG, Hu BL, Xiao L, Wang P. Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma. Cancer Gene Ther. 2011;18(5):370–80.

    Article  PubMed  CAS  Google Scholar 

  50. Seiler MP, Gottschalk S, Cerullo V, Ratnayake M, Mane VP, Clarke C, et al. Dendritic cell function after gene transfer with adenovirus-calcium phosphate co-precipitates. Mol Ther. 2007;15(2):386–92.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was financially supported by National Natural Science Foundation of China (30973648), NSFC-JSPS joint grant supported by both China and Japan (81011140077), Natural Science Foundation of Zhejiang Province, China (R2090176, LY12H30002) and Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents.

Authors declare have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qing Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YZ., Ruan, GX., Yao, XL. et al. Co-transfection Gene Delivery of Dendritic Cells Induced Effective Lymph Node Targeting and Anti-tumor Vaccination. Pharm Res 30, 1502–1512 (2013). https://doi.org/10.1007/s11095-013-0985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0985-8

KEY WORDS

Navigation