Pharmaceutical Research

, Volume 30, Issue 4, pp 1123–1136 | Cite as

Moisture Uptake of Polyoxyethylene Glycol Glycerides Used as Matrices for Drug Delivery: Kinetic Modelling and Practical Implications

  • Sheng Qi
  • Peter Belton
  • William McAuley
  • Doroty Codoni
  • Neerav Darji
Research Paper



Gelucire 50/13, a polyoxyethylene glycol glyceride mixture, has been widely used in drug delivery, but its moisture uptake behaviour is still poorly understood. In this study, the effects of relative humidity, temperature, and drug incorporation on the moisture uptake of Gelucire are reported in relation to their practical implications for preparation of solid dispersions using this material.


DVS combined with kinetics modelling was used as the main experimental method to study the moisture uptake behaviour of Gelucire. Thermal and microscopic methods were employed to investigate the effect of moisture uptake on the physical properties of the material and drug loaded solid dispersions.


The moisture uptake by Gelucire 50/13 is temperature and relative humidity dependent. At low temperatures and low relative humidities, moisture sorption follows a GAB model. The model fitting indicated that at high relative humidities the sorption is a complex process, potentially involving PEG being dissolved and the PEG solution acting as solvent to dissolve other components.


Careful control of the storage and processing environmental conditions are required when using Gelucire 50/13. The incorporation of model drugs not only influences the moisture uptake capacity of Gelucire 50/13 but also the solidification behaviour.


dynamic vapour sorption gelucire moisture uptake PEG solid dispersions storage stability 


  1. 1.
    Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Joshi HN, Tejwani RW, Davidovich M, Sahasrabudhe VP, Jemal M, Bathala MS. Varia; serajuddin ATM. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int J Pharm. 2004;269:251–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives, angewandte chemie. Int Edition. 2010;49(36):6288–308.CrossRefGoogle Scholar
  4. 4.
    Qi S, Marchaud D, Craig DQM. An investigation into the mechanism of dissolution rate enhancement of poorly water-soluble drugs from spray chilled Gelucire 50/13 microspheres. J Pharm Sci. 2010;99(1):262–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Montousse C, Pruvost M, Rodriguez F, Brossard C. Extrusion-spheronization manufacture of Gelucire matrix beads. Drug Dev Ind Pharm. 1999;25(1):75–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Perissutti B, Rubessa F, Princivalle F. Solid dispersions of carbamazepine with Gelucire 44/14 and 50/13. STP Pharma Sci. 2000;10(6):479–84.Google Scholar
  7. 7.
    Dennis AB, Farr SJ, Kellaway IW, Taylor G, Davidson R. In vivo evaluation of rapid release and sustained release Gelucire capsule formulations. Int J Pharm. 1990;65:85–100.CrossRefGoogle Scholar
  8. 8.
    Khan N, Craig DQM. The influence of drug incorporation on the structure and release properties of solid dispersions in the lipid matrices. J Control Release. 2003;93:355–68.PubMedCrossRefGoogle Scholar
  9. 9.
    Choy YW, Khan N, Yuen KH. Significance of lipid matrix aging on in vitro release and in vivo bioavailability. Int J Pharm. 2005;299(1–2):55–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Sutananta W, Craig DQM, Newton JM. An investigation into the effect of preparation conditions on the structure and mechanical properties of pharmaceutical glyceride bases. Int J Pharm. 1994;110:75–91.CrossRefGoogle Scholar
  12. 12.
    Sutananta W, Craig DQM, Newton JM. The effects of ageing on the thermal behaviour and mechanical properties of pharmaceutical glycerides. Int J Pharm. 1994;111:51–62.CrossRefGoogle Scholar
  13. 13.
    Khan N, Craig DQM. The role of blooming in determining the storage stability of lipid-based dosage forms. J Pharm Sci. 2004;93:2962–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Brubach JB, Ollivon M, Jannin V, Mahler B, Bourgaux C, Lesieur P, et al. Structural and thermal characterization of lipidic excipients and carriers by X-ray diffraction coupled to differential microcalorimetry. J Phys Chem B. 2004;108(46):17721–9.CrossRefGoogle Scholar
  15. 15.
    Svensson A, Neves C, Cabane B. Hydration of an amphiphilic excipient, Gelucire® 44/14. Int J Pharm. 2004;281:107–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Mehuys E, Vervaet C, Gielen I, Van Bree H, Remon JP. In vitro and in vivo evaluation of a matrix-in-cylinder system for sustained drug delivery. J Control Release. 2004;96(2):261–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Wu PC, Tsai MJ, Huang YB, Chang JS, Tsai YH. In vitro and in vivo evaluation of potassium chloride sustained release formulation prepared with saturated polyglycolyed glycerides matrices. Int J Pharm. 2002;243(1–2):119–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154(1):2–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.CrossRefGoogle Scholar
  20. 20.
    Brunauer S, Deeming LS, Deeming WE. On the theory of the van der Waals adsorption of gases. J Am Chem Soc. 1940;62:1723–32.CrossRefGoogle Scholar
  21. 21.
    Timmermann EO, Chirife J, Iglesias HA. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters. J Food Eng. 2001;48:19–31.CrossRefGoogle Scholar
  22. 22.
    de Jong GI, van den Berg C, Kokelaar AJ. Water vapour sorption behaviour of original and defatted wheat gluten. Int J Food Sci Technol. 1996;31:5519–26.Google Scholar
  23. 23.
    Foley NJ, Thomas KM, Forshaw PR, Stanton D, Norman PR. Kinetics of water vapour adsorption on activated carbon. Langmuir. 1997;13(7):2083–9.CrossRefGoogle Scholar
  24. 24.
    Thijs HML, Becer CR, Guerrero-Sanchez C, Fournier D, Hoogenboom R, Schubert US. Water uptake of hydrophilic polymers determined by a thermal gravimetric analyzer with a controlled humidity chamber. J Mater Chem. 2007;17:4864–71.CrossRefGoogle Scholar
  25. 25.
    Ribeiro AM, Sauer TP, Grande CA, Moreira RFPM, Loureiro JM, Rodrigues AE. Adsorption equilibrium and kinetics of water vapor on different adsorbents. Ind Eng Chem Res. 2008;47(18):7019–26.CrossRefGoogle Scholar
  26. 26.
    Al-Muhtaseb AH, McMinn WAM, Magee TRA. Water sorption isotherms of starch powders: part 1: mathematical description of experimental data. J Food Engineering. 2004;61(3):297–307.CrossRefGoogle Scholar
  27. 27.
    Al-Muhtaseb AH, McMinn WAM, Magee TRA. Water sorption isotherms of starch powders. Part 2: thermodynamic characteristics. J food. Engineering. 2004;62(2):135–42.Google Scholar
  28. 28.
    Hunter NE, Frampton CS, Craig D, Belton P. The use of dynamic vapour sorption methods for the characterisation of water uptake in amorphous trehalose. Carbohydrate Res. 2010;345(13):1938–44.CrossRefGoogle Scholar
  29. 29.
    Peleg M. An empirical model for description of moisture sorption curves. J Food Sci. 1988;41:57–72.Google Scholar
  30. 30.
    Hancock BC, Zografi G. The use of solution theories for predicting water vapor absorption by amorphous pharmaceutical solids. Pharm Res. 1993;10:1262–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Lammert AM, Schmidt SJ, Day GA. Water activity and solubility of trehalose. Food Chem. 1998;61:139–44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sheng Qi
    • 1
  • Peter Belton
    • 2
  • William McAuley
    • 3
  • Doroty Codoni
    • 1
  • Neerav Darji
    • 1
  1. 1.School of PharmacyUniversity of East AngliaNorwichUK
  2. 2.School of ChemistryUniversity of East AngliaNorwichUK
  3. 3.School of PharmacyUniversity of HertfordshireHatfieldUK

Personalised recommendations