Skip to main content

Advertisement

Log in

Investigation of Follicular and Non-follicular Pathways for Polyarginine and Oleic Acid-Modified Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the percutaneous permeation pathways of cell penetrating peptide modified lipid nanoparticles and oleic acid modified polymeric nanoparticles.

Methods

Confocal microscopy was performed on skin cultures (EpiDermFT™) for modified and un-modified nanoparticles. Differential stripping was performed following in vitro skin permeation of Ibuprofen (Ibu) encapsulated nanoparticles to estimate Ibu levels in different skin layers and receiver compartment. The hair follicles (HF) were blocked and in vitro skin permeation of nanoparticles was then compared with unblocked HF. The surface modified nanoparticles were investigated for response on allergic contact dermatitis (ACD).

Results

Surface modified nanoparticles showed a significant higher (p < 0.05) in fluorescence in EpiDermFT™ cultures compared to controls. The HF play less than 5% role in total nanoparticle permeation into the skin. The Ibu levels were significantly high (p < 0.05) for surface modified nanoparticles compared to controls. The Ibu levels in skin and receiver compartment were not significantly different when HF were open or closed. Modified nanoparticles showed significant improvement in treatment of ACD compared to solution.

Conclusions

Our studies demonstrate that increased skin permeation of surface modified nanoparticles is not only dependent on a follicular pathway but also occur through non-follicular pathway(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CLSM:

confocal laser scanning microscopy

CPP:

cell Penetrating Peptide

DiO-NLC:

DiO-dye encapsulated NLC

DiO-NLC-R11:

polyarginine-11 (R11) coated DiO-NLC

DiO-NLC-YKA:

YKA coated DiO-NLC

DiO-NPS:

DiO encapsulated NPS

DiO-NPS+OA (PM):

DiO-NPS with OA physical mixture

DiO-NPS-OA:

OA coated DiO-NPS

DiO-Sol:

DiO containing solution

DXM:

dexamethasone

HF:

hair follicle

Ibu:

ibuprofen

Ibu-NLC:

Ibu-encapsulated NLC

Ibu-NLC-R11:

polyarginine-11 (R11) coated Ibu-NLC

Ibu-NLC-YKA:

YKA coated Ibu-NLC

Ibu-NPS:

Ibu-encapsulated NPS

Ibu-NPS+OA (PM):

Ibu-NPS with OA physical mixture

Ibu-NPS-OA:

OA coated Ibu-NPS

Ibu-Sol:

Ibu containing solution

NHEK:

normal human epidermal keratinocyte

NLC:

nano structured lipid carrier

NPS:

polymeric bilayered nanoparticles

OA:

oleic acid

PLGA:

poly(lactic-co-glycolic acid)

SC:

stratum corneum

References

  1. Meidan VM, Bonner MC, Michniak BB. Transfollicular drug delivery—is it a reality? Int J Pharm. 2005;306(1–2):1–14.

    Article  PubMed  CAS  Google Scholar 

  2. Lademann J, Richter H, Meinke M, Sterry W, Patzelt A. Which skin model is the most appropriate for the investigation of topically applied substances into the hair follicles? Skin Pharmacol Physiol. 2010;23(1):47–52.

    Article  PubMed  CAS  Google Scholar 

  3. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27(7):247–59.

    Article  PubMed  CAS  Google Scholar 

  4. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96.

    Article  PubMed  CAS  Google Scholar 

  5. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125(3):193–209.

    Article  PubMed  CAS  Google Scholar 

  6. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.

    Article  PubMed  CAS  Google Scholar 

  7. Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res. 2011;303(8):533–50.

    Article  PubMed  CAS  Google Scholar 

  8. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66(2):159–64.

    Article  PubMed  CAS  Google Scholar 

  9. Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route–research progress and future perspectives. Eur J Pharm Biopharm. 2009;71(2):173–80.

    Article  PubMed  CAS  Google Scholar 

  10. Desai PR, Shah PP, Patlolla RR, Singh M. Dermal Microdialysis Technique to Evaluate the Trafficking of Surface-Modified Lipid Nanoparticles upon Topical Application. Pharm Res. 2012;29(9):2587–600.

    Article  PubMed  CAS  Google Scholar 

  11. Shah PP, Desai PR, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release. 2012;161(3):735–45.

    Article  PubMed  CAS  Google Scholar 

  12. Patlolla RR, Desai PR, Belay K, Singh MS. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials. 2010;31(21):5598–607.

    Article  PubMed  CAS  Google Scholar 

  13. Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33(5):1607–17.

    Article  PubMed  CAS  Google Scholar 

  14. Shah PP, Desai PR, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release. 2012;158(2):336–45.

    Article  PubMed  CAS  Google Scholar 

  15. El Maghraby GM, Williams AC, Barry BW. Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. J Pharm Pharmacol. 2001;53(10):1311–22.

    Article  PubMed  Google Scholar 

  16. Essa EA, Bonner MC, Barry BW. Human skin sandwich for assessing shunt route penetration during passive and iontophoretic drug and liposome delivery. J Pharm Pharmacol. 2002;54(11):1481–90.

    Article  PubMed  CAS  Google Scholar 

  17. Barry BW. Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev. 2002;54 Suppl 1:S31–40.

    Article  PubMed  CAS  Google Scholar 

  18. Grams YY, Bouwstra JA. A new method to determine the distribution of a fluorophore in scalp skin with focus on hair follicles. Pharm Res. 2002;19(3):350–4.

    Article  PubMed  CAS  Google Scholar 

  19. Grams YY, Whitehead L, Lamers G, Sturmann N, Bouwstra JA. On-line diffusion profile of a lipophilic model dye in different depths of a hair follicle in human scalp skin. J Invest Dermatol. 2005;125(4):775–82.

    Article  PubMed  CAS  Google Scholar 

  20. Teichmann A, Jacobi U, Ossadnik M, Richter H, Koch S, Sterry W, et al. Differential stripping: determination of the amount of topically applied substances penetrated into the hair follicles. J Invest Dermatol. 2005;125(2):264–9.

    PubMed  CAS  Google Scholar 

  21. Patzelt A, Richter H, Buettemeyer R, Huber HJ, Blume-Peytavi U, Sterry W, et al. Differential stripping demonstrates a significant reduction of the hair follicle reservoir in vitro compared to in vivo. Eur J Pharm Biopharm. 2008;70(1):234–8.

    Article  PubMed  CAS  Google Scholar 

  22. Teichmann A, Ossadnik M, Richter H, Sterry W, Lademann J. Semiquantitative determination of the penetration of a fluorescent hydrogel formulation into the hair follicle with and without follicular closure by microparticles by means of differential stripping. Skin Pharmacol Physiol. 2006;19(2):101–5.

    Article  PubMed  CAS  Google Scholar 

  23. Trauer S, Lademann J, Knorr F, Richter H, Liebsch M, Rozycki C, et al. Development of an in vitro modified skin absorption test for the investigation of the follicular penetration pathway of caffeine. Skin Pharmacol Physiol. 2010;23(6):320–7.

    Article  PubMed  CAS  Google Scholar 

  24. Otberg N, Patzelt A, Rasulev U, Hagemeister T, Linscheid M, Sinkgraven R, et al. The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol. 2008;65(4):488–92.

    Article  PubMed  CAS  Google Scholar 

  25. Trauer S, Patzelt A, Otberg N, Knorr F, Rozycki C, Balizs G, et al. Permeation of topically applied caffeine through human skin—a comparison of in vivo and in vitro data. Br J Clin Pharmacol. 2009;68(2):181–6.

    Article  PubMed  CAS  Google Scholar 

  26. Blume-Peytavi U, Massoudy L, Patzelt A, Lademann J, Dietz E, Rasulev U, et al. Follicular and percutaneous penetration pathways of topically applied minoxidil foam. Eur J Pharm Biopharm. 2010;76(3):450–3.

    Article  PubMed  CAS  Google Scholar 

  27. Meidan VM. Methods for quantifying intrafollicular drug delivery: a critical appraisal. Expert Opin Drug Deliv. 2010;7(9):1095–108.

    Article  PubMed  CAS  Google Scholar 

  28. Mallampati R, Patlolla RR, Agarwal S, Babu RJ, Hayden P, Klausner M, et al. Evaluation of EpiDerm full thickness-300 (EFT-300) as an in vitro model for skin irritation: studies on aliphatic hydrocarbons. Toxicol In Vitro. 2010;24(2):669–76.

    Article  PubMed  CAS  Google Scholar 

  29. Teichmann A, Otberg N, Jacobi U, Sterry W, Lademann J. Follicular penetration: development of a method to block the follicles selectively against the penetration of topically applied substances. Skin Pharmacol Physiol. 2006;19(4):216–23.

    Article  PubMed  CAS  Google Scholar 

  30. Chougule MB, Patel AR, Jackson T, Singh M. Antitumor activity of Noscapine in combination with Doxorubicin in triple negative breast cancer. PLoS One. 2011;6(3):e17733.

    Article  PubMed  CAS  Google Scholar 

  31. Cohen-Avrahami M, Libster D, Aserin A, Garti N. Sodium diclofenac and cell-penetrating peptides embedded in H(II) mesophases: physical characterization and delivery. J Phys Chem B. 2011;115(34):10189–97.

    Article  PubMed  CAS  Google Scholar 

  32. Afonin S, Frey A, Bayerl S, Fischer D, Wadhwani P, Weinkauf S, et al. The cell-penetrating peptide TAT(48–60) induces a non-lamellar phase in DMPC membranes. Chemphyschem. 2006;7(10):2134–42.

    Article  PubMed  CAS  Google Scholar 

  33. Kumar S, Sahdev P, Perumal O, Tummala H. Identification of a novel skin penetration enhancement peptide by phage display peptide library screening. Mol Pharm. 2012;9(5):1320–30.

    PubMed  CAS  Google Scholar 

  34. Rowat AC, Kitson N, Thewalt JL. Interactions of oleic acid and model stratum corneum membranes as seen by 2H NMR. Int J Pharm. 2006;307(2):225–31.

    Article  PubMed  CAS  Google Scholar 

  35. Mak WC, Patzelt A, Richter H, Renneberg R, Lai KK, Ruhl E, et al. Triggering of drug release of particles in hair follicles. J Control Release. 2012;160(3):509–14.

    Article  PubMed  CAS  Google Scholar 

  36. Patzelt A, Richter H, Knorr F, Schafer U, Lehr CM, Dahne L, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150(1):45–8.

    Article  PubMed  CAS  Google Scholar 

  37. Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a + cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126(6):1316–22.

    Article  PubMed  CAS  Google Scholar 

  38. Wosicka H, Cal K. Targeting to the hair follicles: current status and potential. J Dermatol Sci. 2010;57(2):83–9.

    Article  PubMed  CAS  Google Scholar 

  39. Jung S, Otberg N, Thiede G, Richter H, Sterry W, Panzner S, et al. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J Invest Dermatol. 2006;126(8):1728–32.

    Article  PubMed  CAS  Google Scholar 

  40. Abdulmajed K, Heard CM. Topical delivery of retinyl ascorbate. 3. Influence of follicle sealing and skin stretching. Skin Pharmacol Physiol. 2008;21(1):46–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

This project was supported by the National Center for Research Resources and the National Institute of Minority Health and Health Disparities of the National Institutes of Health through Grant Number 8 G12 MD007582-28 and 2 G12 RR003020. Pinaki R. Desai and Punit P. Shah contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandip Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, P.R., Shah, P.P., Hayden, P. et al. Investigation of Follicular and Non-follicular Pathways for Polyarginine and Oleic Acid-Modified Nanoparticles. Pharm Res 30, 1037–1049 (2013). https://doi.org/10.1007/s11095-012-0939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0939-6

KEY WORDS

Navigation