Pharmaceutical Research

, Volume 29, Issue 12, pp 3512–3525 | Cite as

Biodegradable Polymer-Curcumin Conjugate Micelles Enhance the Loading and Delivery of Low-Potency Curcumin

  • Rulei Yang
  • Suai Zhang
  • Deling Kong
  • Xuli Gao
  • Yanjun Zhao
  • Zheng Wang
Research Paper



To utilize a novel type of polymer-drug conjugate micelle to enhance the delivery of low-potency curcumin.


Multiple curcumin molecules were conjugated to poly(lactic acid) (PLA) via tris(hydroxymethyl)aminomethane (Tris) linker producing the hydrophobic drug-binding block; methoxy-poly(ethylene glycol) (mPEG) was employed as the hydrophilic block. Micelles were characterized by size, loading capacity, stability, and critical micelle concentration (CMC). Human hepatocellular carcinoma (HepG2) cells were employed to assess cytotoxicity and intracellular targeting ability of micelles.


mPEG-PLA-Tris-Cur micelles were within nanorange (<100 nm). CMC of such micelles (2.3 ± 0.4 μg/mL) was 10 times lower than mPEG-PLA micelles (27.4 ± 0.8 μg/mL). Curcumin loading in mPEG-PLA-Tris-Cur micelles reached 18.5 ± 1.3% (w/w), compared to traditional mPEG-PLA micelles at 3.6 ± 0.4% (w/w). IC50 of mPEG-PLA-Tris-Cur micelles (~22 μg/mL at curcumin-equivalent dose) was similar to unmodified curcumin. Placebo and drug-encapsulated conjugate micelles could be efficiently internalized to cytoplasmic compartment of HepG2 cells.


Micelle-forming polymer-drug conjugates containing multiple drug molecules were an efficient means to increase loading and intracellular delivery of low-potency curcumin.


curcumin drug loading micelle mPEG-PLA polymer-drug conjugate 



confocal laser scanning microscope


critical micelle concentration




mono-carboxyl-terminated curcumin




4-dimethylamino pyridine


Dulbecco’s modification of eagle’s medium




enhanced permeability and retention effect


gluraric anhydride


generally regarded as safe


human hepatocellular carcinoma cells


high performance liquid chromatography


methoxy-poly(ethylene glycol)


mononuclear phagocyte system


molecular weight cut-off


N-hydroxy succinimide


nuclear magnetic resonance




poly(lactic acid)


red blood cells






Acknowledgments and Disclosures

This work was supported by Tianjin Research Program of Application Foundation and Advanced Technology (11JCZDJC20600; 11JCYBJC10300), National Natural Science Foundation of China (81171478; 31100699), and the Research Fund for the Doctoral Program of Higher Education of China (20110032120077).

The authors of this article have no conflicts of interest to declare.

Supplementary material

11095_2012_848_MOESM1_ESM.tif (3.9 mb)
Esm 1 1H NMR spectra of mPEG-PLA, mPEG-PLA-COOH, and mPEG-PLA-Tris. (TIFF 4019 kb)
11095_2012_848_MOESM2_ESM.tif (184 kb)
Esm 2 1H NMR spectra of Cur-GA, 821. (TIFF 183 kb)


  1. 1.
    Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, Wang J, Tang J, Fan M, Van Kirk E, Murdoch WJ. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 2010;132(12):4259–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Shin HC, Alani AWG, Cho H, Bae Y, Kolesar JM, Kwon GS. A 3-in-1 Polymeric Micelle nanocontainer for poorly water-soluble drugs. Mol Pharm. 2011;8(4):1257–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Tang H, Murphy CJ, Zhang B, Shen Y, Sui M, Van Kirk EA, Feng X, Murdoch W. Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. Nanomedicine (Lond). 2010;5(6):855–65.CrossRefGoogle Scholar
  6. 6.
    Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Radosz M. Curcumin polymers as anticancer conjugates. Biomaterials. 2010;31(27):7139–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Lao C, Ruffin M, Normolle D, Heath D, Murray S, Bailey J, Boggs M, Crowell J, Rock C, Brenner D. Dose escalation of a curcuminoid formulation. BMC Complementary Altern Med. 2006;6(1):10.CrossRefGoogle Scholar
  8. 8.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Yallapu MM, Jaggi M, Chauhan SC. Beta-cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B. 2010;79(1):113–25.CrossRefGoogle Scholar
  10. 10.
    Anand P, Nair HB, Sung BK, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79(3):330–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Shahani K, Panyam J. Highly loaded, sustained-release microparticles of curcumin for chemoprevention. J Pharm Sci. 2011;100(7):2599–609.PubMedCrossRefGoogle Scholar
  12. 12.
    Safavy A, Raisch KP, Mantena S, Sanford LL, Sham SW, Krishna NR, Bonner JA. Design and development of water-soluble curcumin conjugates as potential anticancer agents. J Med Chem. 2007;50(24):6284–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang F, Koh GY, Jeansonne DP, Hollingsworth J, Russo PS, Vicente G, Stout RW, Liu Z. A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. J Pharm Sci. 2011;100(7):2778–89.PubMedCrossRefGoogle Scholar
  14. 14.
    Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011;359(1):318–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Manju S, Sreenivasan K. Synthesis and characterization of a cytotoxic cationic polyvinylpyrrolidone-curcumin conjugate. J Pharm Sci. 2011;100(2):504–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A. 2008;86(2):300–10.PubMedGoogle Scholar
  17. 17.
    Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3(4):1558–67.PubMedCrossRefGoogle Scholar
  18. 18.
    Mohanty C, Acharya S, Mohanty AK, Dilnawaz F, Sahoo SK. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine (Lond). 2010;5(3):433–49.CrossRefGoogle Scholar
  19. 19.
    Pitarresi G, Palumbo FS, Albanese A, Fiorica C, Picone P, Giammona G. Self-assembled amphiphilic hyaluronic acid graft copolymers for targeted release of antitumoral drug. J Drug Target. 2010;18(4):264–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4(6):1752–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Li ZB, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP. Multicompartment micelles from ABC miktoarm stars in water. Science. 2004;306(5693):98–101.PubMedCrossRefGoogle Scholar
  22. 22.
    Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K. Preparation of micelle-forming polymer-drug conjugates. Bioconjugate Chem. 1992;3(4):295–301.CrossRefGoogle Scholar
  23. 23.
    Hu X, Jing X. Biodegradable amphiphilic polymer-drug conjugate micelles. Expert Opin Drug Deliv. 2009;6(10):1079–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Discher DE, Kamien RD. Self-assembly —towards precision micelles. Nature. 2004;430(6999):519–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Hans M, Shimoni K, Danino D, Siegel SJ, Lowman A. Synthesis and characterization of mPEG-PLA prodrug micelles. Biomacromolecules. 2005;6(5):2708–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Shi W, Dolai S, Rizk S, Hussain A, Tariq H, Averick S, L’Amoreaux W, El Idrissi A, Banerjee P, Raja K. Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer, and a PAMAM dendrimer curcumin conjugate for therapeutic applications. Org Lett. 2007;9(26):5461–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Li S, Vert M. Synthesis, characterization, and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of l(d)-lactide in the presence of poly(ethylene glycol). Macromolecules. 2003;36(21):8008–14.CrossRefGoogle Scholar
  28. 28.
    Zhang X, Li Y, Chen X, Wang X, Xu X, Liang Q, Hu J, Jing X. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials. 2005;26(14):2121–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhu W, Li Y, Liu L, Zhang W, Chen Y, Xi F. Biamphiphilic triblock copolymer micelles as a multifunctional platform for anticancer drug delivery. J Biomed Mater Res A. 2011;96A(2):330–40.CrossRefGoogle Scholar
  30. 30.
    Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude RP, Hassan PA, Aswal V, Steiniger F, Thamm J, Fahr A. Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 2011;8(3):716–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Prajapati RN, Tekade RK, Gupta U, Gajbhiye V, Jain NK. Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Mol Pharm. 2009;6(3):940–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Kwon GS, Okano T. Soluble Self-assembled block copolymers for drug delivery. Pharm Res. 1999;16(5):597–600.PubMedCrossRefGoogle Scholar
  33. 33.
    Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Torchilin V. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang L, Eisenberg A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science. 1995;268(5218):1728–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res. 1998;15(2):270–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Parikh T, Bommana MM, Squillante III E. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur J Pharm Biopharm. 2010;74(3):442–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 2004;25(14):2843–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Gref R, Miralles G, Dellacherie E. Polyoxyethylene-coated nanospheres: effect of coating on zeta potential and phagocytosis. Polym Int. 1999;48(4):251–6.CrossRefGoogle Scholar
  40. 40.
    Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(d, l-lactide)-block-poly(ethylene oxide) micelles. J Control Release. 2004;94(2–3):323–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B. 1999;16(1–4):3–27.CrossRefGoogle Scholar
  42. 42.
    Nagarajan R, Ganesh K. Block copolymer self-assembly in selective solvents: theory of solubilization in spherical micelles. Macromolecules. 1989;22(11):4312–25.CrossRefGoogle Scholar
  43. 43.
    Kim SH, Tan JPK, Nederberg F, Fukushima K, Colson J, Yang C, Nelson A, Yang YY, Hedrick JL. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials. 2010;31(31):8063–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee ALZ, Venkataraman S, Sirat SBM, Gao S, Hedrick JL, Yang YY. The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Biomaterials. 2012;33(6):1921–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867–76.PubMedCrossRefGoogle Scholar
  46. 46.
    Yallapu MM, Ebeling MC, Chauhan N, Jaggi M, Chauhan SC. Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. Int J Nanomedicine. 2011;6:2779–90.PubMedGoogle Scholar
  47. 47.
    Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98(3):415–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Luo L, Tam J, Maysinger D, Eisenberg A. Cellular internalization of poly(ethylene oxide)-b-poly(ε-caprolactone) diblock copolymer micelles. Bioconjugate Chem. 2002;13(6):1259–65.CrossRefGoogle Scholar
  49. 49.
    Aryal S, Hu CMJ, Zhang L. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm. 2011;8(4):1401–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300(5619):615–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency School of Pharmaceutical Science & TechnologyTianjin UniversityTianjinChina
  2. 2.Institute of Biomedical EngineeringChinese Academy of Medical Sciences Peking Union Medical CollegeTianjinChina
  3. 3.Key Laboratory of Bioactive Materials, Ministry of Education, College of Life ScienceNankai UniversityTianjinChina

Personalised recommendations