Skip to main content

Advertisement

Log in

Dermal Microdialysis Technique to Evaluate the Trafficking of Surface-Modified Lipid Nanoparticles upon Topical Application

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the skin pharmacokinetics and tissue distribution of cell penetrating peptides (CPP) modified nano-structured lipid carrier (NLC) using an in vivo dermal microdialysis (MD) technique.

Methods

Celecoxib (Cxb) encapsulated NLCs (CXBN), CPP modified CXBN (CXBN-CPP) and Cxb-Solution (CXBS) formulations were prepared and tested for in vitro skin distribution. MD was used to assess pharmacokinetic parameters of Cxb after topical application of Cxb formulations. The effect of pre-treatment with Cxb formulations was evaluated for expression of prostaglandin-E2 (PGE2) and Interleukin-6 (IL-6) after exposure of xylene using MD. Allergic contact dermatitis (ACD) model was used to confirm in vivo therapeutic response of Cxb formulations.

Results

The cumulative permeation of Cxb in MD dialysate after 24 h for CXBN-CPP was significantly higher (p < 0.001) than CXBN and CXBS. Further, pre-treatment with CXBN-CPP significantly inhibited PGE2 and IL-6 expression compared to CXBS and CXBN (p < 0.001). In ACD model, CXBN-CPP showed significant reduction (p < 0.001) in ear thickness compared to controls.

Conclusions

Surface modification of NLC with CPPs can enhance the skin permeation of Cxb and MD can be used to investigate pharmacokinetics of Cxb nanoparticles in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ACD:

allergic contact dermatitis

CPP:

cell penetrating peptide

Cxb:

Celecoxib

CXBN:

Cxb encapsulated NLCs

CXBN-R11 :

Polyarginine-11 (R11) coated CXBN

CXBN-R15 :

Polyarginine-11 (R15) coated CXBN

CXBN-R8 :

Polyarginine-8 (R8) coated CXBN

CXBN-TAT:

TAT coated CXBN

CXBN-YKA:

YKA coated CXBN

CXBS:

Celecoxib-solution

DOGS-NTA-Ni:

1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl) imidodiacetic acid) succinyl nickel salt]

IL-6:

interleukin-6

MD:

microdialysis

NLC:

nano-structured lipid carrier

PGE2 :

prostaglandin E2

TAT:

trans-acting activator of transcription

REFERENCES

  1. Jensen LB, Petersson K, Nielsen HM. In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. Eur J Pharm Biopharm. 2011;79:68–75.

    Article  PubMed  CAS  Google Scholar 

  2. Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci. 2010;99:21–50.

    Article  PubMed  CAS  Google Scholar 

  3. Patlolla RR, Desai PR, Belay K, Singh MS. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials. 2010;31:5598–607.

    Article  PubMed  CAS  Google Scholar 

  4. Desai PR, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27:247–59.

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000;56:318–25.

    Article  PubMed  CAS  Google Scholar 

  6. Futaki S, Nakase I, Suzuki T, Youjun Z, Sugiura Y. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Biochemistry. 2002;41:7925–30.

    Article  PubMed  CAS  Google Scholar 

  7. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;276:5836–40.

    Article  PubMed  CAS  Google Scholar 

  8. Mathy FX, Ntivunwa D, Verbeeck RK, Preat V. Fluconazole distribution in rat dermis following intravenous and topical application: a microdialysis study. J Pharm Sci. 2005;94:770–80.

    Article  PubMed  CAS  Google Scholar 

  9. Groth L, Serup J. Cutaneous microdialysis in man: effects of needle insertion trauma and anaesthesia on skin perfusion, erythema and skin thickness. Acta Derm Venereol. 1998;78:5–9.

    Article  PubMed  CAS  Google Scholar 

  10. Mathy FX, Denet AR, Vroman B, Clarys P, Barel A, Verbeeck RK, et al. In vivo tolerance assessment of skin after insertion of subcutaneous and cutaneous microdialysis probes in the rat. Skin Pharmacol Appl Skin Physiol. 2003;16:18–27.

    PubMed  CAS  Google Scholar 

  11. Holmgaard R, Nielsen JB, Benfeldt E. Microdialysis sampling for investigations of bioavailability and bioequivalence of topically administered drugs: current state and future perspectives. Skin Pharmacol Physiol. 2010;23:225–43.

    Article  PubMed  CAS  Google Scholar 

  12. Benfeldt E, Hansen SH, Volund A, Menne T, Shah VP. Bioequivalence of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermatopharmacokinetic method. J Invest Dermatol. 2007;127:170–8.

    Article  PubMed  CAS  Google Scholar 

  13. Stenken JA, Church MK, Gill CA, Clough GF. How minimally invasive is microdialysis sampling? A cautionary note for cytokine collection in human skin and other clinical studies. AAPS J. 2010;12:73–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kreilgaard M. Assessment of cutaneous drug delivery using microdialysis. Adv Drug Deliv Rev. 2002;54:S99–S121.

    Article  PubMed  CAS  Google Scholar 

  15. Salgo R, Thaci D, Boehncke S, Diehl S, Hofmann M, Boehncke WH. Microdialysis documents changes in the micromilieu of psoriatic plaques under continuous systemic therapy. Exp Dermatol. 2011;20:130–3.

    Article  PubMed  Google Scholar 

  16. Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnology. 2008;6:8.

    Article  PubMed  Google Scholar 

  17. Patlolla RR, Mallampati R, Fulzele SV, Babu RJ, Singh M. Dermal microdialysis of inflammatory markers induced by aliphatic hydrocarbons in rats. Toxicol Lett. 2009;185:168–74.

    Article  PubMed  CAS  Google Scholar 

  18. Fulzele SV, Babu RJ, Ahaghotu E, Singh M. Estimation of proinflammatory biomarkers of skin irritation by dermal microdialysis following exposure with irritant chemicals. Toxicology. 2007;237:77–88.

    Article  PubMed  CAS  Google Scholar 

  19. Souto EB, Wissing SA, Barbosa CM, Muller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278:71–7.

    Article  PubMed  CAS  Google Scholar 

  20. Babu RJ, Kanikkannan N, Kikwai L, Ortega C, Andega S, Ball K, et al. The influence of various methods of cold storage of skin on the permeation of melatonin and nimesulide. J Control Release. 2003;86:49–57.

    Article  PubMed  CAS  Google Scholar 

  21. Kearney JN. Guidelines on processing and clinical use of skin allografts. Clin Dermatol. 2005;23:357–64.

    Article  PubMed  Google Scholar 

  22. Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release. 2010;144:233–41.

    Article  PubMed  CAS  Google Scholar 

  23. Shah PP, Desai PR, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release. 2012. doi:10.1016/j.jconrel.2012.05.011.

  24. Shah P, Desai P, Patel A, Singh M. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33:1607–17.

    Article  PubMed  CAS  Google Scholar 

  25. Shah PP, Desai P, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release. 2012;158:336–45.

    Article  PubMed  Google Scholar 

  26. Schafer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59:427–43.

    Article  PubMed  Google Scholar 

  27. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63:470–91.

    Article  PubMed  CAS  Google Scholar 

  28. Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70:633–40.

    Article  PubMed  CAS  Google Scholar 

  29. Lopes LB, Furnish E, Komalavilas P, Seal BL, Panitch A, Bentley MV, et al. Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Eur J Pharm Biopharm. 2008;68:441–5.

    Article  PubMed  CAS  Google Scholar 

  30. Uchida T, Kanazawa T, Takashima Y, Okada H. Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002. Chem Pharm Bull(Tokyo). 2011;59:196–201.

    Article  Google Scholar 

  31. Cohen-Avrahami M, Libster D, Aserin A, Garti N. Sodium diclofenac and cell-penetrating peptides embedded in H(II) mesophases: physical characterization and delivery. J Phys Chem B. 2011;115:10189–97.

    Article  PubMed  CAS  Google Scholar 

  32. Cohen-Avrahami M, Aserin A, Garti N. H(II) mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac. Colloids Surf B Biointerfaces. 2010;77:131–8.

    Article  PubMed  CAS  Google Scholar 

  33. Shinkai N, Korenaga K, Takizawa H, Mizu H, Yamauchi H. Percutaneous penetration of felbinac after application of transdermal patches: relationship with pharmacological effects in rats. J Pharm Pharmacol. 2008;60:71–6.

    Article  PubMed  CAS  Google Scholar 

  34. Shinkai N, Korenaga K, Okumura Y, Mizu H, Yamauchi H. Microdialysis assessment of percutaneous penetration of ketoprofen after transdermal administration to hairless rats and domestic pigs. Eur J Pharm Biopharm. 2011;78:415–21.

    Article  PubMed  CAS  Google Scholar 

  35. Sjogren F, Anderson CD. Are cutaneous microdialysis cytokine findings supported by end point biopsy immunohistochemistry findings? AAPS J. 2010;12:741–9.

    Article  PubMed  Google Scholar 

  36. Yang BC, Chu ZF, Zhu S, Wang LJ, Feng YH, Li FH, et al. Study of pharmacokinetics and tissue distribution of liposomal brucine for dermal administration. Int J Nanomedicine. 2011;6:1109–16.

    Article  PubMed  CAS  Google Scholar 

  37. Eberle T, Doganci B, Kramer H, Fechir M, Wagner I, Sommer C, et al. Mechanical but not painful electrical stimuli trigger TNF alpha release in human skin. Exp Neurol. 2010;221:246–50.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang F, Koyama Y, Sanuki R, Mitsui N, Suzuki N, Kimura A, et al. IL-17A stimulates the expression of inflammatory cytokines via celecoxib-blocked prostaglandin in MC3T3-E1 cells. Arch Oral Biol. 2010;55:679–88.

    Article  PubMed  CAS  Google Scholar 

  39. Davis TW, Zweifel BS, O’Neal JM, Heuvelman DM, Abegg AL, Hendrich TO, et al. Inhibition of cyclooxygenase-2 by celecoxib reverses tumor-induced wasting. J Pharmacol Exp Ther. 2004;308:929–34.

    Article  PubMed  CAS  Google Scholar 

  40. Hirano T. Interleukin-6 and its relation to inflammation and disease. Clin Immunol Immunopathol. 1992;62:S60–5.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This project was supported by the National Center for Research Resources and the National Institute of Minority Health and Health Disparities of the National Institutes of Health through Grant Number 8 G12 MD007582-28 and 2 G12 RR003020. The authors declare no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandip Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, P.R., Shah, P.P., Patlolla, R.R. et al. Dermal Microdialysis Technique to Evaluate the Trafficking of Surface-Modified Lipid Nanoparticles upon Topical Application. Pharm Res 29, 2587–2600 (2012). https://doi.org/10.1007/s11095-012-0789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0789-2

KEY WORDS

Navigation