Pharmaceutical Research

, Volume 29, Issue 9, pp 2398–2406 | Cite as

Development of a Nanocrystalline Paclitaxel Formulation for Hipec Treatment

  • Lieselotte De Smet
  • Pieter Colin
  • Wim Ceelen
  • Marc Bracke
  • Jan Van Bocxlaer
  • Jean Paul Remon
  • Chris Vervaet
Research Paper



To develop a nanocrystalline paclitaxel formulation with a high paclitaxel-to-stabilizer ratio which can be used for hyperthermic intraperitoneal chemotherapy (HIPEC).


Paclitaxel (PTX) nanocrystals were prepared via wet milling using Pluronic F127® as stabilizer. The suitability of paclitaxel nanosuspensions for HIPEC treatment was evaluated by analyzing the cytotoxicity of both stabilizer and formulation, and by determining the maximum tolerated dose (MTD) and bioavailability. The effect on tumor growth was evaluated by magnetic resonance imaging (MRI) at day 7 and 14 after HIPEC treatment in rats with peritoneal carcinomatosis of ovarian origin.


Monodisperse nanosuspensions (±400 nm) were developed using Pluronic F127® as single additive. The cytotoxicity and MTD of this nanocrystalline formulation was similar compared to Taxol®, while its bioavailability was higher. MRI data after HIPEC treatment with a PTX nanocrystalline suspension showed a significant reduction of tumor volume compared to the non-treated group. Although no significant differences on tumor volume were observed between Taxol® and the nanosuspension, the rats treated with the nanosuspension recovered faster following the HIPEC procedure.


Nanosuspensions with a high paclitaxel-to-stabilizer ratio are of interest for the treatment of peritoneal carcinomatosis of ovarian origin via HIPEC.

Key Words

hyperthermic intraperitoneal chemotherapy nanocrystal ovarian cancer paclitaxel wet milling 



hyperthermic intraperitoneal chemotherapy


maximum tolerated dose


polyethylene oxide

Plu F127

Pluronic F127®

Plu F68

Pluronic F68®


polypropylene oxide




tumor growth delay


  1. 1.
    Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46(4):765–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Sugarbaker PH. Comprehensive management of peritoneal surface malignancy using cytoreductive surgery and perioperative intraperitoneal chemotherapy: the Washington Cancer Institute approach. Expert Opin Pharmacother. 2009;10(12):1965–77.PubMedCrossRefGoogle Scholar
  3. 3.
    Mohamed F, Cecil T, Moran B, Sugarbaker P. A new standard of care for the management of peritoneal surface malignancy. Curr Oncol. 2011;18(2):E84–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Bristow RE, Puri I, Chi DS. Cytoreductive surgery for recurrent ovarian cancer: A meta-analysis. Gynecol Oncol. 2009;112(1):265–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Dovern E, de Hingh I, Verwaal VJ, van Driel WJ, Nienhuijs SW. Hyperthermic intraperitoneal chemotherapy added to the treatment of ovarian cancer. A review of achieved results and complications. Eur J Gynaecol Oncol. 2010;31(3):256–61.PubMedGoogle Scholar
  6. 6.
    Markman M. Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol. 2003;4(5):277–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Colson YL, Liu R, Southard EB, Schulz MD, Wade JE, Griset AP, et al. The performance of expansile nanoparticles in a murine model of peritoneal carcinomatosis. Biomaterials. 2011;32(3):832–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62(11):1569–79.PubMedCrossRefGoogle Scholar
  10. 10.
    Kesisoglou F, Panmai S, Wu Y. Application of nanoparticles in oral delivery of immediate release formulations. Current Nanoscience. 2007;3(2):183–90.CrossRefGoogle Scholar
  11. 11.
    Liu F, Park J-Y, Zhang Y, Conwell C, Liu Y, Bathula SR, et al. Targeted Cancer Therapy With Novel High Drug-Loading Nanocrystals. J Pharm Sci. 2010;99(8):3542–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Yeo Y, Ito T, Bellas E, Highley CB, Marini R, Kohane DS. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Ann Surg. 2007;245(5):819–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Bouquet W, Ceelen W, Adriaens E, Almeida A, Quinten T, De Vos F, et al. In vivo Toxicity and Bioavailability of Taxol (R) and a Paclitaxel/beta-Cyclodextrin Formulation in a Rat Model During HIPEC. Ann Surg Oncol. 2010;17(9):2510–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28.PubMedCrossRefGoogle Scholar
  15. 15.
    Kabanov AV, Batrakova EV, Alakhov VY. Pluronic((R)) block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev. 2002;54(5):759–79.PubMedCrossRefGoogle Scholar
  16. 16.
    Batrakova EV, Li S, Brynskikh AM, Sharma AK, Li YL, Boska M, et al. Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J Control Release. 2010;143(3):290–301.PubMedCrossRefGoogle Scholar
  17. 17.
    Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011;409(1–2):260–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Debree E, Rosing H, Filis D, Romanos J, Melisssourgaki M, Daskalakis M, et al. Cytoreductive surgery and intraoperative hyperthermic intraperitoneal chemotherapy with paclitaxel: A clinical and pharmacokinetic study. Ann Surg Oncol. 2008;15(4):1183–92.CrossRefGoogle Scholar
  20. 20.
    Bajaj G, Yeo Y. Drug delivery systems for intraperitoneal therapy. Pharm Res. 2010;27(5):735–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu P, Rong XY, Laru J, van Veen B, Kiesvaara J, Hirvonen J, et al. Nanosuspensions of poorly soluble drugs: Preparation and development by wet milling. Int J Pharm. 2011;411(1–2):215–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Tannock IF, Lee CM, Tunggal JK, Cowan DSM, Egorin MJ. Limited penetration of anticancer drugs through tumor tissue: A potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res. 2002;8(3):878–84.PubMedGoogle Scholar
  23. 23.
    Fujiwara K, Armstrong D, Morgan M, Markman M. Principles and practice of intraperitoneal chemotherapy for ovarian cancer. Int J Gynecol Cancer. 2007;17(1):1–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lieselotte De Smet
    • 1
  • Pieter Colin
    • 2
  • Wim Ceelen
    • 3
  • Marc Bracke
    • 4
  • Jan Van Bocxlaer
    • 2
  • Jean Paul Remon
    • 1
  • Chris Vervaet
    • 1
  1. 1.Laboratory of Pharmaceutical TechnologyGhent UniversityGhentBelgium
  2. 2.Laboratory of Medical Biochemistry and Clinical AnalysisGhent UniversityGhentBelgium
  3. 3.Laboratory of Experimental SurgeryGhent University HospitalGhentBelgium
  4. 4.Department of Experimental OncologyGhent University HospitalGhentBelgium

Personalised recommendations