Pharmaceutical Research

, Volume 29, Issue 6, pp 1698–1711 | Cite as

Human Pancreatic Polypeptide in a Phospholipid-Based Micellar Formulation

Research Paper



Pancreatic polypeptide (PP) has important glucoregulatory functions and thereby holds significance in the treatment of diabetes and obesity. However, short plasma half-life and aggregation propensity of PP in aqueous solution, limits its therapeutic application. To address these issues, we prepared and characterized a formulation of PP in sterically stabilized micelles (SSM) that protects and stabilizes PP in its active conformation.


PP-SSM was prepared by incubating PP with SSM dispersion in buffer. Peptide-micelle association and freeze-drying efficacy of the formulation was characterized in phosphate buffers with or without sodium chloride using dynamic light scattering, fluorescence spectroscopy and circular dichroism. The degradation kinetics of PP-SSM in presence of proteolytic enzyme was determined using HPLC and bioactivity of the formulation was evaluated by in vitro cAMP inhibition study.


PP self-associated with SSM and this interaction was influenced by presence/absence of sodium chloride in the buffer. The formulation was effectively lyophilized, demonstrating feasibility for its long-term storage. The stability of peptide against proteolytic degradation was significantly improved and PP in SSM retained its bioactivity in vitro.


Self-association of PP with phospholipid micelles addressed the delivery issues of the peptide. This nanomedicine should be further developed for the treatment of diabetes.


chronic pancreatitis pancreatic polypeptide pancreatogenic diabetes peptide nanomedicine sterically stabilized micelles 



analysis of variance


cyclic adenosine monophosphate


circular dichroism


critical micellar concentration


chronic pancreatitis


dynamic light scattering


distearoyl phosphatidylethanolamine-polyethylene glycol2000


eagle’s minimum essential media






neuropeptide Y


normal saline


phosphate buffer


phosphate buffered saline


pancreatogenic diabetes


pancreatic polypeptide


peversed phase high pressure liquid chromatography


standard deviation


sterically stabilized micelles



The authors thank Dr. Bao-Shiang Lee for synthesizing PP used in the research.

The study was supported in part by NIH grant CA121797 and UIC university scholar award.


  1. 1.
    Lonovics J, Devitt P, Watson LC, Thompson JC. Pancreatic polypeptide. A review. Arch Surg. 1981;116(10):1256–64.PubMedCrossRefGoogle Scholar
  2. 2.
    Schmidt PT, Naslund E, Gryback P, Jacobsson H, Holst JJ, Hilsted L, et al. A role for pancreatic polypeptide in the regulation of gastric emptying and short-term metabolic control. J Clin Endocrinol Metab. 2005;90(9):5241–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Langlois A, Corring T, Levenez F, Cuber JC, Chayvialle JA. Effects of pancreatic polypeptide on biliary flow and bile acid secretion stimulated by secretin and cholecystokinin in the conscious pig. Regul Pept. 1990;27(1):139–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Lerch M, Kamimori H, Folkers G, Aguilar MI, Beck-Sickinger AG, Zerbe O. Strongly altered receptor binding properties in PP and NPY chimeras are accompanied by changes in structure and membrane binding. Biochemistry. 2005;44(25):9255–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Bard JA, Walker MW, Branchek TA, Weinshank RL. Cloning and functional expression of a human Y4 subtype receptor for pancreatic polypeptide, neuropeptide Y, and peptide YY. J Biol Chem. 1995;270(45):26762–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Seymour NE, Spector SA, Andersen DK, Elm MS, Whitcomb DC. Overexpression of hepatic pancreatic polypeptide receptors in chronic pancreatitis. J Surg Res. 1998;76(1):47–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Hennig R, Kekis PB, Friess H, Adrian TE, Buchler MW. Pancreatic polypeptide in pancreatitis. Peptides. 2002;23(2):331–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Adrian TE, Besterman HS, Mallinson CN, Garalotis C, Bloom SR. Impaired pancreatic polypeptide release in chronic pancreatitis with steatorrhoea. Gut. 1979;20(2):98–101.PubMedCrossRefGoogle Scholar
  9. 9.
    Cui Y, Andersen DK. Pancreatogenic diabetes: special considerations for management. Pancreatology. 2011;11(3):279–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Seymour NE, Andersen DK. Pancreatic polypeptide and glucose metabolism. In: Jr G, editor. Gastrointestinal endocrinology. New Jersey: Humana; 1999. p. 321–34.Google Scholar
  11. 11.
    Seymour NE, Volpert AR, Andersen DK. Regulation of hepatic insulin receptors by pancreatic polypeptide in fasting and feeding. J Surg Res. 1996;65(1):1–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Seymour NE, Volpert AR, Lee EL, Andersen DK, Hernandez C. Alterations in hepatocyte insulin binding in chronic pancreatitis: effects of pancreatic polypeptide. Am J Surg. 1995;169(1):105–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Asakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003;124(5):1325–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Steppan CM, Lazar MA. Resistin and obesity-associated insulin resistance. Trends Endocrinol Metab. 2002;13(1):18–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Adrych K, Smoczynski M, Sledzinski T, Dettlaff-Pokora A, Goyke E, Swierczynski J. Increased serum resistin concentration in patients with chronic pancreatitis: possible cause of pancreatic fibrosis. J Clin Gastroenterol. 2009;43(1):63–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Andersen DK. Mechanisms and emerging treatments of the metabolic complications of chronic pancreatitis. Pancreas. 2007;35(1):1–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Brunicardi FC, Chaiken RL, Ryan AS, Seymour NE, Hoffmann JA, Lebovitz HE, et al. Pancreatic polypeptide administration improves abnormal glucose metabolism in patients with chronic pancreatitis. J Clin Endocrinol Metab. 1996;81(10):3566–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Sun YS, Brunicardi FC, Druck P, Walfisch S, Berlin SA, Chance RE, et al. Reversal of abnormal glucose metabolism in chronic pancreatitis by administration of pancreatic polypeptide. Am J Surg. 1986;151(1):130–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Seymour NE, Brunicardi FC, Chaiken RL, Lebovitz HE, Chance RE, Gingerich RL, et al. Reversal of abnormal glucose production after pancreatic resection by pancreatic polypeptide administration in man. Surgery. 1988;104(2):119–29.PubMedGoogle Scholar
  20. 20.
    Adrian TE, Greenberg GR, Besterman HS, Bloom SR. Pharmacokinetics of pancreatic polypeptide in man. Gut. 1978;19(10):907–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Baxter J, Minnion J, Shilto-Cuenco J, Tan T, Murphy K, Ghatei M, et al. Pancreatic polypeptide: a novel substrate for the endopeptidase neprilysin. Endocr Abstr. 2010;21:P133.Google Scholar
  22. 22.
    Swierczek JS, Pawlik W, Konturek SJ, Gustaw P, Dobrzanska M, Bielanski W, et al. Organ removal and disappearance half-time of synthetic human pancreatic polypeptide. Digestion. 1982;25(3):197–200.PubMedCrossRefGoogle Scholar
  23. 23.
    Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci. 2004;93(10):2476–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Krishnadas A, Rubinstein I, Onyuksel H. Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res. 2003;20(2):297–302.PubMedCrossRefGoogle Scholar
  25. 25.
    Onyuksel H, Jeon E, Rubinstein I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett. 2009;274(2):327–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Onyuksel H, Sejourne F, Suzuki H, Rubinstein I. Human VIP-alpha: a long-acting, biocompatible and biodegradable peptide nanomedicine for essential hypertension. Peptides. 2006;27(9):2271–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Lim SB, Rubinstein I, Sadikot RT, Artwohl JE, Onyuksel H. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharm Res. 2011;28(3):662–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Koo OM, Rubinstein I, Onyuksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res. 2011;28(4):776–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Koo OM, Rubinstein I, Onyuksel H. Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. Nanomedicine: Nanomed-Nanotechnol Biol Med. 2005;1(1):77–84.CrossRefGoogle Scholar
  30. 30.
    Kuzmis A, Lim SB, Desai E, Jeon E, Lee BS, Rubinstein I, et al. Micellar nanomedicine of human neuropeptide Y. Nanomedicine. 2011;7(4):464–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Vukovic L, Khatib FA, Drake SP, Madriaga A, Brandenburg KS, Kral P, et al. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc. 2011;133(34):13481–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Kanazawa I, Hamaguchi K. Unfolding by temperature and guanidine hydrochloride of chicken pancreatic polypeptide. J Biochem. 1986;100(1):207–12.PubMedGoogle Scholar
  33. 33.
    Glover ID, Barlow DJ, Pitts JE, Wood SP, Tickle IJ, Blundell TL, et al. Conformational studies on the pancreatic polypeptide hormone family. Eur J Biochem. 1984;142(2):379–85.PubMedCrossRefGoogle Scholar
  34. 34.
    Lim SB, Rubinstein I, Önyüksel H. Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. Int J Pharm. 2008;356(1–2):345–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Taylor TC, Thompson DO, Ebner KE, Kimmel JR, Rawitch AB. An immunochemical study of avian pancreatic polypeptide: the nature of the principle epitope. Mol Immunol. 1988;25(10):961–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Li A, Ritter S. Functional expression of neuropeptide Y receptors in human neuroblastoma cells. Regul Pept. 2005;129(1–3):119–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Lazo ND, Downing DT. Stabilization of amphipathic alpha-helical and beta-helical conformations in synthetic peptides in the presence and absence of ionic interactions. J Pept Res. 1998;51(1):85–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Lerch M, Gafner V, Bader R, Christen B, Folkers G, Zerbe O. Bovine Pancreatic Polypeptide (bPP) undergoes significant changes in conformation and dynamics upon binding to DPC micelles. J Mol Biol. 2002;322(5):1117–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Tonan K, Kawata Y, Hamaguchi K. Conformations of isolated fragments of pancreatic polypeptide. Biochemistry. 1990;29(18):4424–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biopharmaceutical SciencesUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Biopharmaceutical Sciences (M/C 865) College of PharmacyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations