Pharmaceutical Research

, Volume 29, Issue 5, pp 1282–1294 | Cite as

Targeted Endothelial Gene Delivery by Ultrasonic Destruction of Magnetic Microbubbles Carrying Lentiviral Vectors

  • Hanna Mannell
  • Joachim Pircher
  • Thomas Räthel
  • Katharina Schilberg
  • Katrin Zimmermann
  • Alexander Pfeifer
  • Olga Mykhaylyk
  • Bernhard Gleich
  • Ulrich Pohl
  • Florian Krötz



Site specific vascular gene delivery is a promising tool for treatment of cardiovascular diseases. By combining ultrasound mediated microbubble destruction with site specific magnetic targeting of lentiviruses, we aimed to develop a technique suitable for systemic application.


The magnetic nanoparticle coupling to lipid microbubbles was confirmed by absorbance measurements. Association of fluorescent lentivirus to magnetic microbubbles (MMB) was determined by microscopy and flow cytometry. Functionality and efficiency of GFP-encoding lentiviral MMB transduction was evaluated by endothelial (HMEC) GFP expression and cytotoxicity was measured by MTT reduction.


Microbubbles with a mean diameter of 4.3 ± 0.04 μm were stable for 2 days, readily magnetizable and magnetically steerable in vitro and efficiently associated with lentivirus. Exposure of eGFP-encoding lentiviral MMB to human endothelial cells followed by application of an external static magnetic field (30 min) and ultrasonic destruction of the microbubbles did not markedly affect cellular viability. Finally, this combination led to a 30-fold increase in transduction efficiency compared to application of naked virus alone.


By associating microbubbles with magnetic iron nanoparticles, these function as carriers for lentiviruses achieving tissue specific deposition at the site of interest.


endothelial cells gene delivery lentiviral transduction magnetic nanoparticles microbubbles ultrasound 



duty cycle




magnetic field


magnetic microbubbles


magnetic nanoparticles





This work was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the DFG Research Unit FOR917.

We thank Professor Kräusslich at the Department of Virology, University Clinic Heidelberg for kindly providing the pCHIV.eGFP lentiviral vector.


  1. 1.
    Barry MA, Hofherr SE, Chen CY, Senac JS, Hillestad ML, Shashkova EV. Systemic delivery of therapeutic viruses. Curr Opin Mol Ther. 2009;11:411–20.PubMedGoogle Scholar
  2. 2.
    Pfeiferand A, Hofmann A. Lentiviral transgenesis. Methods Mol Biol. 2009;530:391–405.CrossRefGoogle Scholar
  3. 3.
    Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.PubMedGoogle Scholar
  4. 4.
    Phillips L, Klibanov A, Wamhoff B, Hossack J. Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery. Ultrasound Med Biol. 2010;36:1470–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhou J, Wang Y, Xiong Y, Wang H, Feng Y, Chen J. Delivery of TFPI-2 using ultrasound with a microbubble agent (SonoVue) inhibits intimal hyperplasia after balloon injury in a rabbit carotid artery model. Ultrasound Med Biol. 2010;36:1876–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Tinkov S, Coester C, Serba S, Geis N, Katus H, Winter G, Bekeredjian R. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. J Control Release. 2010;148:368–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Kondo I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomiya K, Noma T, Namba T, Kohno M. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol. 2004;44:644–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation. 2003;108:1022–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Stride E, Porter C, Prieto AG, Pankhurst Q. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields. Ultrasound Med Biol. 2009;35:861–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Vlaskou D, Pradhan P, Bergemann C, Klibanov AL, Hensel K, Schmitz G, Plank C, Mykhaylyk O. Magnetic microbubbles: magnetically targeted and ultrasound-triggered vectors for gene delivery in vitro. AIP Conf Proc. 2010;1311:485–94.CrossRefGoogle Scholar
  11. 11.
    Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release. 2006;114:89–99.PubMedCrossRefGoogle Scholar
  12. 12.
    Lampe M, Briggs J, Endress T, Glass B, Riegelsberger S, Krausslich H, Lamb D, Brauchle C, Muller B. Double-labelled HIV-1 particles for study of virus-cell interaction. Virology. 2007;360:92–104.PubMedCrossRefGoogle Scholar
  13. 13.
    Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM, Eberbeck D, Schulte M, Zimmermann K, Bergemann C, Gleich B, Roell W, Weyh T, Trahms L, Nickenig G, Fleischmann BK, Pfeifer A. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc Natl Acad Sci USA. 2009;106:44–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Trueck C, Zimmermann K, Mykhaylyk O, Anton M, Vosen S, Wenzel D, Fleischmann B, Pfeifer A. Optimization of magnetic nanoparticles assisted lentiviral gene transfer. Pharmaceut Res. In revision; 2011.Google Scholar
  15. 15.
    Mannell H, Hellwig N, Gloe T, Plank C, Sohn HY, Groesser L, Walzog B, Pohl U, Krotz F. Inhibition of the tyrosine phosphatase SHP-2 suppresses angiogenesis in vitro and in vivo. J Vasc Res. 2008;45:153–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Mykhaylyk O, Antequera Y, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc. 2007;2:2391–411.PubMedCrossRefGoogle Scholar
  17. 17.
    Vlaskou D, Mykhaylyk O, Tresilwised N, Pithayanukul P, Möller W, Plank C. Magnetic nanoparticle formulations for DNA and siRNA delivery. J Magn Magn Mater. 2007;311:275–81.CrossRefGoogle Scholar
  18. 18.
    Mykhaylyk O, Sanchez-Antequera Y, Vlaskou D, Hammerschmid E, Anton M, Zelphati O, Plank C. Liposomal magnetofection. Meth Mol Biol. 2010;605:487–525.CrossRefGoogle Scholar
  19. 19.
    Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C. Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol. 2009;487:111–46.PubMedGoogle Scholar
  20. 20.
    Räthel T, Mannell H, Gleich B, Pohl U, Krötz F. Magnetic stents retain nanoparticle-bound antirestenotic drugs transported by lipid microbubbles Pharmaceutical Research. Accepted, 2011.Google Scholar
  21. 21.
    Krotz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, Plank C. Magnetofection–a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther. 2003;7:700–10.PubMedCrossRefGoogle Scholar
  22. 22.
    Krotz F, Sohn HY, Gloe T, Plank C, Pohl U. Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res. 2003;40:425–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Soetanto K. Development of magnetic microbubbles for Drug Delivery System (DDS). Jpn J Appl Phys. 2000;39:3230–2.CrossRefGoogle Scholar
  24. 24.
    Shohet RV, Chen S, Zhou Y-T, Wang Z, Meidell RS, Unger RH, Grayburn PA. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation. 2000;101:2554–6.PubMedGoogle Scholar
  25. 25.
    Beeri R, Guerrero JL, Supple G, Sullivan S, Levine RA, Hajjar RJ. New efficient catheter-based system for myocardial gene delivery. Circulation. 2002;106:1756–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor S, Rahim A, Bush N, Bamber J, Porter C. Targeted retroviral gene delivery using ultrasound. J Gene Med. 2007;9:77–87.PubMedCrossRefGoogle Scholar
  27. 27.
    Su C, Chang C, Wang H, Wu Y, Bettinger T, Tsai C, Yeh H. Ultrasonic microbubble-mediated gene delivery causes phenotypic changes of human aortic endothelial cells. Ultrasound Med Biol. 2010;36:449–58.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang Y, Xu H, Lu M, Tang Q. Expression of thymidine kinase mediated by a novel non-viral delivery system under the control of vascular endothelial growth factor receptor 2 promoter selectively kills human umbilical vein endothelial cells. World J Gastroenterol. 2008;14:224–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Meijering B, Henning R, Van Gilst W, Gavrilovic I, Van Wamel A, Deelman L. Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells. J Drug Target. 2007;15:664–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Pislaru SV, Harbuzariu A, Gulati R, Witt T, Sandhu NP, Simari RD, Sandhu GS. Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol. 2006;48:1839–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Chorny M, Fishbein I, Yellen BB, Alferiev IS, Bakay M, Ganta S, Adamo R, Amiji M, Friedman G, Levy RJ. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci USA. 2010;107:8346–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hanna Mannell
    • 1
  • Joachim Pircher
    • 2
  • Thomas Räthel
    • 2
  • Katharina Schilberg
    • 2
  • Katrin Zimmermann
    • 3
  • Alexander Pfeifer
    • 3
  • Olga Mykhaylyk
    • 4
  • Bernhard Gleich
    • 5
  • Ulrich Pohl
    • 1
  • Florian Krötz
    • 2
  1. 1.Walter-Brendel-Centre of Experimental MedicineMunichGermany
  2. 2.Cardiology, Medical PoliclinicLudwig-Maximilians-UniversityMunichGermany
  3. 3.Institute of Pharmacology and ToxicologyBiomedical Center University of BonnBonnGermany
  4. 4.Institute of Experimental Oncology and Therapy ResearchTechnische Universität MünchenMunichGermany
  5. 5.Central Institute of Medical Engineering (IMETUM)Technische Universität MünchenGarchingGermany

Personalised recommendations