Pharmaceutical Research

, Volume 28, Issue 12, pp 3189–3198 | Cite as

Treatment of 9L Gliosarcoma in Rats by Ferrociphenol-Loaded Lipid Nanocapsules Based on a Passive Targeting Strategy via the EPR Effect

  • Ngoc Trinh Huynh
  • Marie Morille
  • Jerome Bejaud
  • Pierre Legras
  • Anne Vessieres
  • Gerard Jaouen
  • Jean-Pierre Benoit
  • Catherine Passirani
Research Paper



To study a passive targeting strategy, via the enhanced permeability and retention effect following systemic administration of lipid nanocapsules (LNCs) loaded with ferrociphenol, FcdiOH.


Long chains of polyethylene glycol (DSPE-mPEG2000) were incorporated onto the surface of LNCs by post-insertion technique. Stealth properties of LNCs were investigated by in vitro complement consumption and macrophage uptake, and in vivo pharmacokinetics in healthy rats. Antitumour effect of FcdiOH-loaded LNCs was evaluated in subcutaneous and intracranial 9L gliosarcoma rat models.


LNCs and DSPE-mPEG2000-LNCs presented low complement activation and weak macrophage uptake. DSPE-mPEG2000-LNCs exhibited prolonged half-life and extended area under the curve in healthy rats. In a subcutaneous gliosarcoma model, a single intravenous injection of FcdiOH-LNCs (400 μL, 2.4 mg/rat) considerably inhibited tumour growth when compared to the control. DSPE-mPEG2000-FcdiOH-LNCs exhibited a strong antitumour effect by nearly eradicating the tumour by the end of the study. In intracranial gliosarcoma model, treatment with DSPE-mPEG2000-FcdiOH-LNCs and FcdiOH-LNCs statistically improved median survival time (28 and 27.5 days, respectively) compared to the control (25 days).


These results demonstrate the interesting perspectives for the systemic treatment of glioma thanks to bio-organometallic chemotherapy via lipid nanocapsules.


ectopic FcdiOH orthotopic PEGylated nanoparticles stealth properties 



The authors would like to thank Jerome Roux (Service Commun d’Animalerie Hospitalo-Universitaire (SCAHU), Angers, France), Pascal Pigeon (CNRS, UMR 7223, Ecole Nationale Supérieure de Chimie de Paris, France), Nolwenn Lautram, Anne-Laure Laine (Inserm U646, Angers, France) and Emilie Allard (Universite de Tours, France) for their technical support. This work is supported by grants from La Ligue Nationale Contre le Cancer. Ngoc Trinh Huynh thanks the Embassy of France in Vietnam for its Evarist Galoir fellowship.


  1. 1.
    Jaouen G, Top S, Vessieres A, Alberto R. New paradigms for synthetic pathways inspired by bioorganometallic chemistry. J Organomet Chem. 2000;600(1–2):23–36.CrossRefGoogle Scholar
  2. 2.
    Vessieres A, Top S, Pigeon P, Hillard E, Boubeker L, Spera D, et al. Modification of the estrogenic properties of diphenols by the incorporation of ferrocene. Generation of antiproliferative effects in vitro. J Med Chem. 2005;48(12):3937–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Top S, Vessieres A, Leclercq G, Quivy J, Tang J, Vaissermann J, et al. Synthesis, biochemical properties and molecular modelling studies of organometallic specific estrogen receptor modulators (SERMs), the ferrocifens and hydroxyferrocifens: evidence for an antiproliferative effect of hydroxyferrocifens on both hormone-dependent and hormone-independent breast cancer cell lines. Chemistry. 2003;9(21):5223–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Allard E, Passirani C, Garcion E, Pigeon P, Vessieres A, Jaouen G, et al. Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J Control Release. 2008;130(2):146–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Nguyen A, Marsaud V, Bouclier C, Top S, Vessieres A, Pigeon P, et al. Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment. Int J Pharm. 2008;347(1–2):128–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002;19(6):875–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379(2):201–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Allard E, Huynh NT, Vessieres A, Pigeon P, Jaouen G, Benoit JP, et al. Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model. Int J Pharm. 2009;379(2):317–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27(24):4356–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Huynh NT, Roger E, Lautram N, Benoit JP, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond). 2010;5(9):1415–33.CrossRefGoogle Scholar
  11. 11.
    Ballot S, Noiret N, Hindre F, Denizot B, Garin E, Rajerison H, et al. 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur J Nucl Med Mol Imaging. 2006;33(5):602–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Morille M, Montier T, Legras P, Carmoy N, Brodin P, Pitard B, et al. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials. 2010;31(2):321–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Papadopoulos MC, Saadoun S, Binder DK, Manley GT, Krishna S, Verkman AS. Molecular mechanisms of brain tumor edema. Neuroscience. 2004;129(4):1011–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer. 2004;109(5):759–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Yamashita Y, Saito R, Krauze M, Kawaguchi T, Noble C, Drummond D, et al. Convection-enhanced delivery of liposomal doxorubicin in intracranial brain tumor xenografts. Target Oncol. 2006;1(2):79–85.CrossRefGoogle Scholar
  17. 17.
    Corsini E, Gelati M, Calatozzolo C, Alessandri G, Frigerio S, De Francesco M, et al. Immunotherapy with bovine aortic endothelial cells in subcutaneous and intracerebral glioma models in rats: effects on survival time, tumor growth, and tumor neovascularization. Cancer Immunol Immunother. 2004;53(11):955–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe MJ, Couvreur P, et al. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther. 2002;303(3):928–36.PubMedCrossRefGoogle Scholar
  19. 19.
    Jaouen G, Top S, Vessières A, Leclercq G, Quivy J, Jin L, et al. The first organometallic antioestrogens and their antiproliferative effects. Comptes Rendus de l’Academie des Sciences—Series IIc: Chemistry. 2000;3(2):89–93.CrossRefGoogle Scholar
  20. 20.
    Anton N, Gayet P, Benoit JP, Saulnier P. Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int J Pharm. 2007;344:44–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Beduneau A, Saulnier P, Anton N, Hindre F, Passirani C, Rajerison H, et al. Pegylated nanocapsules produced by an organic solvent-free method: evaluation of their stealth properties. Pharm Res. 2006;23(9):2190–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Hoarau D, Delmas P, David S, Roux E, Leroux JC. Novel long-circulating lipid nanocapsules. Pharm Res. 2004;21(10):1783–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Vonarbourg A, Passirani C, Desigaux L, Allard E, Saulnier P, Lambert O, et al. The encapsulation of DNA molecules within biomimetic lipid nanocapsules. Biomaterials. 2009;30(18):3197–204.PubMedCrossRefGoogle Scholar
  24. 24.
    Hureaux J, Lagarce F, Gagnadoux F, Rousselet MC, Moal V, Urban T, et al. Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm Res. 2010;27(3):421–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Lamprecht A, Saumet JL, Roux J, Benoit JP. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int J Pharm. 2004;278(2):407–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Garcion E, Lamprecht A, Heurtault B, Paillard A, Aubert-Pouessel A, Denizot B, et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther. 2006;5(7):1710–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A. 2006;78(3):620–8.PubMedGoogle Scholar
  28. 28.
    Passirani C, Barratt G, Devissaguet JP, Labarre D. Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci. 1998;62(8):775–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982;42(4):1530–6.PubMedGoogle Scholar
  30. 30.
    Vonarbourg A, Saulnier P, Passirani C, Benoit JP. Electrokinetic properties of noncharged lipid nanocapsules: influence of the dipolar distribution at the interface. Electrophoresis. 2005;26(11):2066–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine. 2009;5(4):410–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Mattheolabakis G, Taoufik E, Haralambous S, Roberts ML, Avgoustakis K. In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles. Eur J Pharm Biopharm. 2009;71(2):190–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Zamboni WC, Ramalingam S, Friedland DM, Edwards RP, Stoller RG, Strychor S, et al. Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin Cancer Res. 2009;15(4):1466–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Passirani C, Benoit JP. Complement activation by injectable colloidal drug carriers. In: Mahato RI, editor. Biomaterials for delivery and targeting of proteins and nucleic acids. Boca Raton: CRC; 187. p. 230–2005.Google Scholar
  35. 35.
    Yuan F, Qin X, Zhou D, Xiang QY, Wang MT, Zhang ZR, et al. In vitro cytotoxicity, in vivo biodistribution and antitumor activity of HPMA copolymer-5-fluorouracil conjugates. Eur J Pharm Biopharm. 2008;70(3):770–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Emerson DL, Bendele R, Brown E, Chiang S, Desjardins JP, Dihel LC, et al. Antitumor efficacy, pharmacokinetics, and biodistribution of NX 211: a low-clearance liposomal formulation of lurtotecan. Clin Cancer Res. 2000;6(7):2903–12.PubMedGoogle Scholar
  37. 37.
    Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm. 2008;346(1–2):143–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Kawano K, Watanabe M, Yamamoto T, Yokoyama M, Opanasopit P, Okano T, et al. Enhanced antitumor effect of camptothecin loaded in long-circulating polymeric micelles. J Control Release. 2006;112(3):329–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Murphy S, Davey RA, Gu XQ, Haywood MC, McCann LA, Mather LE, et al. Enhancement of cisplatin efficacy by thalidomide in a 9L rat gliosarcoma model. J Neurooncol. 2007;85(2):181–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Segal MB. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol. 2000;20(2):183–96.PubMedCrossRefGoogle Scholar
  42. 42.
    Sharma US, Sharma A, Chau RI, Straubinger RM. Liposome-mediated therapy of intracranial brain tumors in a rat model. Pharm Res. 1997;14(8):992–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Heldin CH, Rubin K, Pietras K, Östman A. High interstitial fluid pressure—An obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003;4(2):133–46.PubMedCrossRefGoogle Scholar
  45. 45.
    Machein MR, Plate KH. VEGF in brain tumors. J Neurooncol. 2000;50(1–2):109–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ngoc Trinh Huynh
    • 1
    • 2
  • Marie Morille
    • 1
    • 2
  • Jerome Bejaud
    • 1
    • 2
  • Pierre Legras
    • 3
  • Anne Vessieres
    • 4
  • Gerard Jaouen
    • 4
  • Jean-Pierre Benoit
    • 1
    • 2
  • Catherine Passirani
    • 1
    • 2
  1. 1.LUNAM UniversitéIngénierie de la Vectorisation ParticulaireAngersFrance
  2. 2.INSERM U646AngersFrance
  3. 3.Service Commun d’Animalerie Hospitalo-Universitaire (SCAHU)AngersFrance
  4. 4.CNRS, UMR 7223, Ecole Nationale Supérieure de Chimie de ParisParisFrance

Personalised recommendations