Pharmaceutical Research

, Volume 28, Issue 10, pp 2556–2566 | Cite as

Spontaneous Gelation of a Novel Histamine H4 Receptor Antagonist in Aqueous Solution

  • Alexey Popov
  • Magali B. Hickey
  • Rupa Hiremath
  • Matthew Peterson
  • Poe Ratanabanangkoon
  • Michele Rizzolio
  • Sara Waggener
  • Yuri Zimenkov
Research Paper



Low molecular weight hydrogelators typically require a stimulus such as heat, antisolvent, or pH adjustment to produce a gel. This study examines gelation of a novel histamine H4 receptor antagonist that forms hydrogels spontaneously at room temperature.


To elucidate the mechanism and structural moieties responsible for this unusual gelation, hydrogels were characterized by rheology, optical microscopy, and XRD. SEM was performed on xerogels; NMR measurements were conducted in gelator solutions in the presence of a gel-breaker. The influence of temperature, concentration, pH, and ionic strength on elastic and viscous moduli of the hydrogels was evaluated; gel points were established via thorough rheological criteria.


The observed are “true” gels with a fibrillar texture and lamellar microstructure. On a molecular level, the gels are composed of aggregates of partially ionized species stabilized by hydrophobic interactions of aromatic moieties. The gel-to-sol transition occurs at physiologically relevant temperatures and is concentration-, pH-, and ionic strength-dependent.


We hypothesize that this spontaneous gelation is due to the so-called “spring” effect, a high energy salt form that transiently increases aqueous solubility above its equilibrium limit. Upon equilibration, this supersaturated system undergoes aggregation that avoids crystallization and produces a hydrogel.


gelation low molecular weight hydrogels rheology supramolecular assembly xerogels 


  1. 1.
    Flory PJ. Gels and gelling processes - introduction. Disc Faraday Soc. 1975;57:7–18.Google Scholar
  2. 2.
    Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed. 2009;48(30):5418–29.CrossRefGoogle Scholar
  3. 3.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54(1):3–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Zawaneh PN, Singh SP, Padera RF, Henderson PW, Spector JA, Putnam D. Design of an injectable synthetic and biodegradable surgical biomaterial. Proc Natl Acad Sci USA. 2010;107(24):11014–9.Google Scholar
  6. 6.
    de Loos M, Feringa BL, van Esch JH. Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem. 2005;17:3615–31.CrossRefGoogle Scholar
  7. 7.
    Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev. 2004;104(3):1201–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Sangeetha NM, Maitra U. Supramolecular gels: functions and uses. Chem Soc Rev. 2005;34(10):821–36.PubMedCrossRefGoogle Scholar
  9. 9.
    van Esch JH, Feringa BL. New functional materials based on self-assembling organogels: from serendipity towards design. Angew Chem Int Ed. 2000;39(13):2263–6.CrossRefGoogle Scholar
  10. 10.
    Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev. 1997;97(8):3133–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Vintiloiu A, Leroux JC. Organogels and their use in drug delivery - A review. J Control Release. 2008;125(3):179–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Xing B, Ho PL, Yu CW, Chow KH, Gu H, Xu B. Self-assembled multivalent vancomycin on cell surfaces against vancomycin-resistant enterococci (VRE). Chem Commun (Cambridge, UK). 2003(17):2224–5.Google Scholar
  13. 13.
    Xing B, Yu C-W, Chow K-H, Ho P-L, Fu D, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc. 2002;124(50):14846–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Yang Z, Gu H, Zhang Y, Wang L, Xu B. Small molecule hydrogels based on a class of antiinflammatory agents. Chem Commun (Cambridge, UK). 2004(2):208–9.Google Scholar
  15. 15.
    Zhao F, Ma ML, Xu B. Molecular hydrogels of therapeutic agents. Chem Soc Rev. 2009;38(4):883–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Bieser AM, Tiller JC. Surface-induced hydrogelation. Chem Commun (Cambridge, UK). 2005(31):3942–4.Google Scholar
  17. 17.
    Oda R, Huc I, Candau SJ. Gemini surfactants as new, low molecular weight gelators of organic solvents and water. Angew Chem Int Ed. 1998;37(19):2689–91.CrossRefGoogle Scholar
  18. 18.
    Peresypkin AV, Ellison ME, Panmai S, Cheng YU. Effective gelation of water by an amphiphilic drug. J Pharm Sci. 2008;97(7):2548–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Boettcher C, Schade B, Fuhrhop J-H. Comparative Cryo-Electron microscopy of noncovalent N-Dodecanoyl- (D- and L-) serine assemblies in vitreous toluene and water. Langmuir. 2001;17(3):873–7.CrossRefGoogle Scholar
  20. 20.
    Fuhrhop JH, Schnieder P, Rosenberg J, Boekema E. The chiral bilayer effect stabilizes micellar fibers. J Am Chem Soc. 1987;109(11):3387–90.CrossRefGoogle Scholar
  21. 21.
    Imae T, Funayama K, Krafft MP, Giulieri F, Tada T, Matsumoto T. Small-Angle Scattering and Electron Microscopy Investigation of Nanotubules Made from a Perfluoroalkylated Glucophospholipid. J Colloid Interface Sci. 1999;212(2):330–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Imae T, Hayashi N, Matsumoto T, Tada T, Furusaka M. Structures of Fibrous Supramolecular Assemblies Constructed by Amino Acid Surfactants: Investigation by AFM, SANS, and SAXS. J Colloid Interface Sci. 2000;225(2):285–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Imae T, Takahashi Y, Muramatsu H. Formation of fibrous molecular assemblies by amino acid surfactants in water. J Am Chem Soc. 1992;114(9):3414–9.CrossRefGoogle Scholar
  24. 24.
    Wang GJ, Hamilton AD. Low molecular weight organogelators for water. Chem Commun. 2003;3:310–1.CrossRefGoogle Scholar
  25. 25.
    Nakashima T, Kimizuka N. Light-Harvesting supramolecular hydrogels assembled from short-legged cationic L-Glutamate derivatives and anionic fluorophores. Adv Mater. 2002;14(16):1113–6.CrossRefGoogle Scholar
  26. 26.
    Suzuki M, Yumoto M, Shirai H, Hanabusa K. Supramolecular gels formed by amphiphilic low-molecular-weight gelators of N-alpha, N-epsilon-diacyl-L-lysine derivatives. Chem Eur J. 2008;14(7):2133–44.CrossRefGoogle Scholar
  27. 27.
    Pang S, Zhu D. Pronounced hydrogel formation by the self-assembled aggregate of semifluorinated fatty acid. Chem Phys Lett. 2002;358(5–6):479–83.CrossRefGoogle Scholar
  28. 28.
    Bieser AM, Tiller JC. Structure and properties of an exceptional low molecular weight hydrogelator. J Phys Chem B. 2007;111(46):13180–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Winter HH. Can the gel point of a cross-linking polymer be detected by the G′ - G″ crossover? Polym Eng Sci. 1987;27(22):1698–702.CrossRefGoogle Scholar
  30. 30.
    Colombo P, Sonvico F, Colombo G, Bettini R. Novel platforms for oral drug delivery. Pharm Res. 2009;26(3):601–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Jibry N, Heenan RK, Murdan S. Amphiphilogels for drug delivery: formulation and characterization. Pharm Res. 2004;21(10):1852–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Taulier N, Chalikian TV. Hydrophobic hydration in cyclodextrin complexation. J Phys Chem B. 2006;110(25):12222–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Ross PD, Rekharsky MV. Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys J. 1996;71(4):2144–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Dierking I. Textures of liquid crystals. Weinheim: Wiley-VCH; 2003.CrossRefGoogle Scholar
  35. 35.
    Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Guzmán HR, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Gardner CR, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci. 2007;96(10):2686–702.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alexey Popov
    • 1
    • 3
  • Magali B. Hickey
    • 1
  • Rupa Hiremath
    • 1
  • Matthew Peterson
    • 1
  • Poe Ratanabanangkoon
    • 1
  • Michele Rizzolio
    • 2
  • Sara Waggener
    • 1
  • Yuri Zimenkov
    • 1
  1. 1.TransForm Pharmaceuticals, Inc.LexingtonUSA
  2. 2.Johnson & Johnson Pharmaceutical Research & Development, L.L.C.San DiegoUSA
  3. 3.Kala Pharmaceuticals, Inc.WalthamUSA

Personalised recommendations