Skip to main content
Log in

Multivalent and Flexible PEG-Nitrilotriacetic Acid Derivatives for Non-covalent Protein Pegylation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

A new approach for non-covalent protein PEGylation is translated from immobilized metal ion affinity chromatography, and based on metal coordination bonds between a chelating agent linked to PEG, nitrilotriacetic acid (NTA), and the ring nitrogen of histidines in a protein.

Methods

PEG-NTA conjugates were synthesized differing in the number of NTA units and in the polymer structure. Three derivatives were investigated in association experiments with five model proteins. The most promising complex, PEG8-(NTA)8–Cu2+–G-CSF (granulocyte colony stimulating factor), was thoroughly characterized and the pharmacokinetic profile was evaluated in rats.

Results

The experiments demonstrated that only PEG8-(NTA)8, bearing eight NTA molecules on flexible PEG arms, associated strongly with those proteins having several histidines. The protein secondary structure was not affected in the complex. PEG8-(NTA)8–Cu2+–G-CSF showed a K D of 4.7 nM, as determined by surface plasmon resonance, but the association was not stable in vivo.

Conclusions

PEG8-(NTA)8 is the first derivative able to associate with native proteins and form soluble complexes with a nanomolar K D. The study highlights the need of a multivalent and flexible coordination and encourages further investigations to increase the stability of PEG8-(NTA)8 complexes in vivo either through the use of protein mutants or His-tag proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  PubMed  CAS  Google Scholar 

  2. Abuchowski A, Mccoy R, Palczuk NC, Van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977;252:3582–6.

    PubMed  CAS  Google Scholar 

  3. Abuchowski A, Van Es T, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem. 1977;252:3578–81.

    PubMed  CAS  Google Scholar 

  4. Pasut G, Veronese FM. Polymer—drug conjugation, recent achievements and general strategies. Prog Pol Sci. 2005;32:933–61.

    Article  Google Scholar 

  5. Pasut G, Mero A, Caboi F, Scaramuzza S, Sollai L, Veronese FM. A new PEG-beta-alanine active derivative for releasable protein conjugation. Bioconj Chem. 2008;19:2427–31.

    Article  CAS  Google Scholar 

  6. Greenwald RB, Yang K, Zhao H, Conover CD, Lee S, Filpula D. Controlled release of proteins from their poly(ethylene glycol) conjugates: drug delivery systems employing 1,6-elimination. Bioconj Chem. 2003;14:395–403.

    Article  CAS  Google Scholar 

  7. Zhao H, Yang K, Martinez A, Basu A, Chintala R, Liu HC, et al. Linear and branched bicin linkers for releasable PEGylation of macromolecules: controlled release in vivo and in vitro from mono- and multi-PEGylated proteins. Bioconj Chem. 2006;17:341–51.

    Article  Google Scholar 

  8. Peleg-Shulman T, Tsubery H, Mironchik M, Fridkin M, Schreiber G, Shechter Y. Reversible PEGylation: a novel technology to release native interferon alpha2 over a prolonged time period. J Med Chem. 2004;7:4897–904.

    Article  Google Scholar 

  9. Pasut G, Caboi F, Schrepfer R, Tonon G, Schiavon O, Veronese FM. React Funct Polym. 2007;67:529–39.

    Article  CAS  Google Scholar 

  10. Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975;258:598–9.

    Article  PubMed  CAS  Google Scholar 

  11. Nilsson J, Ståhl S, Lundeberg J, Uhlén M, Nygren P-Å. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif. 1997;11:11–6.

    Article  Google Scholar 

  12. Lata S, Gavutis M, Tampe R, Piehler J. Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. J Am Chem Soc. 2006;128:2365–72.

    Article  PubMed  CAS  Google Scholar 

  13. Goldsmith CR, Jaworski J, Sheng M, Lippard SJ. Selective labeling of extracellular proteins containing polyhistidine sequences by a fluorescein-nitrilotriacetic acid conjugate. J Am Chem Soc. 2006;128:418–9.

    Article  PubMed  CAS  Google Scholar 

  14. Kim SH, Jeyakumar M, Katzenellenbogen JA. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling. J Am Chem Soc. 2007;129:13254–64.

    Article  PubMed  CAS  Google Scholar 

  15. Cheng F, Gamble LJ, Castner DG. XPS, TOF-SIMS, NEXAFS, and SPR characterization of nitrilotriacetic acid-terminated self-assembled monolayers for controllable immobilization of proteins. Anal Chem. 2008;80:2564–73.

    Article  PubMed  CAS  Google Scholar 

  16. Lata S, Reichel A, Brock R, Tampe R, Piehler J. High-affinity adaptors for switchable recognition of histidine-tagged proteins. J Am Chem Soc. 2005;127:10205–15.

    Article  PubMed  CAS  Google Scholar 

  17. Van Broekhoven CL, Altin JG. The novel chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) promotes stable binding of His-tagged proteins to liposomal membranes: potent anti-tumor responses induced by simultaneously targeting antigen, cytokine and costimulatory signals to T cells. Biochim Biophys Acta. 2005;1716:104–16.

    Article  PubMed  Google Scholar 

  18. Huang ZH, Park JI, Watson DS, Hwang P, Szoka FC. Facile synthesis of multivalent nitrilotriacetic acid (NTA) and NTA conjugates for analytical and drug delivery applications. Bioconj Chem. 2006;17:1592–600.

    Article  CAS  Google Scholar 

  19. Huang Z, Hwang P, Watson DS, Cao Jr L. Tris-nitrilotriacetic acids of subnanomolar affinity toward hexahistidine tagged molecules. Bioconjug Chem. 2009;20:1667–72.

    Article  PubMed  CAS  Google Scholar 

  20. Platt V, Huang Z, Cao L, Tiffany M, Riviere K, Szoka Jr FC. Influence of multivalent nitrilotriacetic acid lipid-ligand affinity on the circulation half-life in mice of a liposome-attached His6-protein. Bioconjug Chem. 2010;21:892–902.

    Article  PubMed  CAS  Google Scholar 

  21. Sablin EP, Woods A, Krylova IN, Hwang P, Ingraham HA, Fletterick RJ. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proc Natl Acad Sci USA. 2008;105:18390–5.

    Article  PubMed  CAS  Google Scholar 

  22. Guideline on the specification limits for residues of metal catalysts or metal reagents (2008) Committee for medicinal products for human use. London, 21 February 2008. Doc. Ref. EMEA/CHMP/SWP/4446/2000.Available from: www.ema.europa.eu/pdfs/human/swp/444600enfin.pdf

  23. Snyder SL, Sobocinski PZ. An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem. 1975;64:284–8.

    Article  PubMed  CAS  Google Scholar 

  24. Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM. PEG-epirubicin conjugates with high drug loading. J Bioac Comp Pol. 2005;20:213–30.

    Article  CAS  Google Scholar 

  25. Porath J, Olin B. Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry. 1983;22:1621–30.

    Article  PubMed  CAS  Google Scholar 

  26. Knecht S, Ricklin D, Eberle AN, Ernst B. Oligohis-tags: mechanisms of binding to Ni2+−NTA surfaces. J Mol Recognit. 2009;22:270–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ishino T, Pillalamarri U, Panarello D, Bhattacharya M, Urbina C, Horvat S, et al. Asymmetric usage of antagonist charged residues drives interleukin-5 receptor recruitment but is insufficient for receptor activation. Biochemistry. 2006;45:1106–15.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors were supported in part by MIUR project CPDA085841 and BioKer srl (IT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Pasut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mero, A., Ishino, T., Chaiken, I. et al. Multivalent and Flexible PEG-Nitrilotriacetic Acid Derivatives for Non-covalent Protein Pegylation. Pharm Res 28, 2412–2421 (2011). https://doi.org/10.1007/s11095-011-0468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0468-8

KEY WORDS

Navigation