Pharmaceutical Research

, Volume 28, Issue 9, pp 2223–2232 | Cite as

PEGylation Improves Nanoparticle Formation and Transfection Efficiency of Messenger RNA

  • Senta Üzgün
  • Gabriela Nica
  • Corinna Pfeifer
  • Michele Bosinco
  • Kai Michaelis
  • Jean-François Lutz
  • Marc Schneider
  • Joseph Rosenecker
  • Carsten Rudolph
Research Paper



Cationic polymers have been intensively investigated for plasmid-DNA (pDNA), but few studies addressed their use for messenger-RNA (mRNA) delivery. We analyzed two types of polymers, linear polyethylenimine (l-PEI) and poly-N,N-dimethylaminoethylmethacrylate P(DMAEMA), to highlight specific requirements for the design of mRNA delivery reagents. The effect of PEGylation was investigated using P(DMAEMA-co-OEGMA) copolymer.


The influence of polymer structure on mRNA binding and particle formation was assessed in a side-by-side comparison with pDNA by methods such as agarose-retardation assay and scanning probe microscopy. Transfection studies were performed on bronchial epithelial cells.


Binding of cationic polymers inversely correlated with type of nucleic acid. Whereas P(DMAEMA) bound strongly to pDNA, only weak mRNA binding was observed, which was vice versa for l-PEI. Both polymers resulted in self-assembled nanoparticles forming pDNA complexes of irregular round shape; mRNA particles were significantly smaller and more distinct. Surprisingly, PEGylation improved mRNA binding and transfection efficiency contrary to observations made with pDNA. Co-transfections with free polymer improved mRNA transfection.


Gene delivery requires tailor-made design for each type of nucleic acid. PEGylation influenced mRNA-polymer binding efficiency and transfection and may provide a method of further improving mRNA delivery.


cationic polymers gene delivery mRNA 


  1. 1.
    Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288:669–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296:2410–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374:1597–605.PubMedCrossRefGoogle Scholar
  4. 4.
    McCormack MP, Rabbitts TH. Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2004;350:913–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Mueller C, Flotte TR. Gene therapy for cystic fibrosis. Clin Rev Allergy Immunol. 2008;35:164–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Calos MP. The phiC31 integrase system for gene therapy. Curr Gene Ther. 2006;6:633–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Ivics Z, Izsvak Z. Transposons for gene therapy! Curr Gene Ther. 2006;6:593–607.PubMedCrossRefGoogle Scholar
  8. 8.
    Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 2007;25:786–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Dauty E, Verkman AS. Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J Biol Chem. 2005;280:7823–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Munkonge FM, Dean DA, Hillery E, Griesenbach U, Alton EW. Emerging significance of plasmid DNA nuclear import in gene therapy. Adv Drug Deliv Rev. 2003;55:749–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem. 1998;273:7507–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995;270:18997–9007.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamamoto A, Kormann M, Rosenecker J, Rudolph C. Current prospects for mRNA gene delivery. Eur J Pharm Biopharm. 2009;71:484–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Tendeloo VF, Ponsaerts P, Berneman ZN. mRNA-based gene transfer as a tool for gene and cell therapy. Curr Opin Mol Ther. 2007;9:423–31.PubMedGoogle Scholar
  15. 15.
    Van Driessche A, Van de Velde AL, Nijs G, Braeckman T, Stein B, De Vries JM, et al. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy. 2009;11:653–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Probst J, Weide B, Scheel B, Pichler BJ, Hoerr I, Rammensee HG, et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 2007;14:1175–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Scheel B, Aulwurm S, Probst J, Stitz L, Hoerr I, Rammensee HG, et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol. 2006;36:2807–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, Griese M, Bittmann I, Handgretinger R, Hartl D, Rosenecker J, Rudolph C. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 29:154–7Google Scholar
  20. 20.
    Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. 2001;98:49–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 2001;29:3882–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Read ML, Singh S, Ahmed Z, Stevenson M, Briggs SS, Oupicky D, et al. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 2005;33:e86.PubMedCrossRefGoogle Scholar
  23. 23.
    Zohra FT, Chowdhury EH, Akaike T. High performance mRNA transfection through carbonate apatite-cationic liposome conjugates. Biomaterials. 2009;30:4006–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Orgis M, Wagner E. Linear polyethylenimine: synthesis and transfection procedures for in vitro and in vivo. In: Friedman T, Rossi J, editors. Gene transfer: delivery and expression of cDNA and RNA, a laboratory manual. New York: Cold Spring Habor Laboratory Press; 2007. p. 521–8.Google Scholar
  25. 25.
    Ungaro F, De Rosa G, Miro A, Quaglia F. Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. J Pharm Biomed Anal. 2003;31:143–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Üzgün S, Akdemir Ö, Hsenpusch G, Maucksch C, Golas MM, Sander B, Stark H, Imker R, Lutz JF, Rudolph C. Characterization of tailor-made copolymers of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA) as nonviral gene transfer agents—influence of macromolecular structure on gene vector particle properties and transfection efficiency. Biomacromolecules. in pressGoogle Scholar
  27. 27.
    Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel ML. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci USA. 1992;89:7934–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Cherng JY, van de Wetering P, Talsma H, Crommelin DJ, Hennink WE. Effect of size and serum proteins on transfection efficiency of poly ((2-dimethylamino) ethyl methacrylate)-plasmid nanoparticles. Pharm Res. 1996;13:1038–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Convertine AJ, Benoit DS, Duvall CL, Hoffman AS, Stayton PS. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J Control Release. 2009;133:221–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Severin N, Zhuang W, Ecker C, Kalachev AA, Sokolov IM, Rabe JP. Blowing DNA bubbles. Nano Lett. 2006;6:2561–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Hansma HG, Vesenka J, Siegerist C, Kelderman G, Morrett H, Sinsheimer RL, et al. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science. 1992;256:1180–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Chernov KG, Curmi PA, Hamon L, Mechulam A, Ovchinnikov LP, Pastre D. Atomic force microscopy reveals binding of mRNA to microtubules mediated by two major mRNP proteins YB-1 and PABP. FEBS Lett. 2008;582:2875–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Harada A, Kataoka K. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science. 1999;283:65–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med. 2004;6:1102–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Senta Üzgün
    • 1
    • 3
  • Gabriela Nica
    • 1
  • Corinna Pfeifer
    • 1
    • 3
  • Michele Bosinco
    • 4
  • Kai Michaelis
    • 1
  • Jean-François Lutz
    • 2
  • Marc Schneider
    • 4
  • Joseph Rosenecker
    • 1
  • Carsten Rudolph
    • 1
    • 3
  1. 1.Division of Molecular Pulmonology, Department of PediatricsLudwig Maximilians University of MunichMunichGermany
  2. 2.Fraunhofer Institute for Applied Polymer ResearchPotsdam-GolmGermany
  3. 3.Department of Pharmaceutical TechnologyFree University of BerlinBerlinGermany
  4. 4.Pharmaceutical NanotechnologySaarland UniversitySaarbrückenGermany

Personalised recommendations