Skip to main content

Advertisement

Log in

GFAP Promoter-Driven RNA Interference on TGF-β1 to Treat Liver Fibrosis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The objective was to determine the role of promoters and miRNA backbone in shRNA-based hepatic stellate cell (HSC)-specific transforming growth factor (TGF)-β1 gene silencing. This is expected to avoid the side effect of non-specific TGF-β1 gene silencing.

Methods

Two most potent shRNAs targeting 769 and 1033 start sites of rat TGF-β1 mRNA were cloned into pSilencer 1.0 vector for enhanced TGF-β1 gene silencing. We then constructed HSC-specific pri-miRNA mimic and pri-miRNA cluster mimic expression plasmids in which shRNA expression was driven by a glial fibrillary acidic protein (GFAP) promoter to achieve HSC-specific TGF-β1 gene silencing to avoid nonspecific inhibition of TGF-β1 expression in other cells and organs.

Results

These TGF-β1 pri-miRNA-producing plasmids showed the inhibition of proliferation and induced apoptosis of activated HSC-T6 cells. TGF-β1 pri-miRNA cluster mimic plasmids decreased TGF-β1 and collagen gene expression at both mRNA and protein levels.

Conclusions

GFAP promoter driven TGF-β1 pri-miRNA producing plasmids have the potential to be used for site-specific gene therapeutics to treat liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–69.

    Article  PubMed  CAS  Google Scholar 

  2. Cutroneo KR. TGF-beta-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen. 2007;15 Suppl 1:S54–60.

    Article  PubMed  Google Scholar 

  3. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38 Suppl 1:S38–53.

    Article  PubMed  Google Scholar 

  4. de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, et al. Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol. 2005;145:166–77.

    Article  PubMed  Google Scholar 

  5. George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA. 1999;96:12719–24.

    Article  PubMed  CAS  Google Scholar 

  6. Kim KH, Kim HC, Hwang MY, Oh HK, Lee TS, Chang YC, et al. The antifibrotic effect of TGF-beta1 siRNAs in murine model of liver cirrhosis. Biochem Biophys Res Commun. 2006;343:1072–8.

    Article  PubMed  CAS  Google Scholar 

  7. Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, et al. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology. 2001;120:1784–800.

    Article  PubMed  CAS  Google Scholar 

  8. Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA. 1999;96:2345–9.

    Article  PubMed  CAS  Google Scholar 

  9. De Paula D, Bentley MV, Mahato RI. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. Rna. 2007;13:431–56.

    Article  PubMed  Google Scholar 

  10. Cheng K, Yang N, Mahato RI. TGF-beta1 gene silencing for treating liver fibrosis. Mol Pharm. 2009;6:772–9.

    Article  PubMed  CAS  Google Scholar 

  11. Rumi M, Ishihara S, Aziz M, Kazumori H, Ishimura N, Yuki T, et al. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector. Biochem Biophys Res Commun. 2006;339:540–7.

    Article  PubMed  CAS  Google Scholar 

  12. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology. 2006;130:1807–21.

    Article  PubMed  Google Scholar 

  13. Maubach G, Lim MC, Zhang CY, Zhuo L. GFAP promoter directs lacZ expression specifically in a rat hepatic stellate cell line. World J Gastroenterol. 2006;12:723–30.

    PubMed  CAS  Google Scholar 

  14. Chen SW, Chen YX, Zhang XR, Qian H, Chen WZ, Xie WF. Targeted inhibition of platelet-derived growth factor receptor-beta subunit in hepatic stellate cells ameliorates hepatic fibrosis in rats. Gene Ther. 2008;15:1424–35.

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, Wen XM, Lui EL, Friedman SL, Cui W, Ho NP, et al. Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258. Lab Invest. 2009;89:1152–60.

    Article  PubMed  CAS  Google Scholar 

  16. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 1999;30:77–87.

    Article  PubMed  CAS  Google Scholar 

  17. Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int. 2006;26:8–22.

    Article  PubMed  Google Scholar 

  18. Doh KO, Jung HK, Moon IJ, Kang HG, Park JH, Park JG. Prevention of CCl4-induced liver cirrhosis by ribbon antisense to transforming growth factor-beta1. Int J Mol Med. 2008;21:33–9.

    PubMed  CAS  Google Scholar 

  19. Synthesis, formulation and in vitro evaluation of a novel microtubule destabilizer, SMART-100. Journal of controlled release : official journal of the Controlled Release Society.

  20. Liand F, Mahato RI. Bipartite vectors for co-expression of a growth factor cDNA and short hairpin RNA against an apoptotic gene. J Gene Med. 2009;11:764–71.

    Article  Google Scholar 

  21. Jia X, Cheng K, Mahato RI. Coexpression of vascular endothelial growth factor and interleukin-1 receptor antagonist for improved human islet survival and function. Mol Pharm. 2007;4:199–207.

    Article  PubMed  CAS  Google Scholar 

  22. Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol. 2002;36:200–9.

    Article  PubMed  Google Scholar 

  23. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009;583:759–66.

    Article  PubMed  CAS  Google Scholar 

  24. Boudreau RL, Monteys AM, Davidson BL. Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. Rna. 2008;14:1834–44.

    Article  PubMed  CAS  Google Scholar 

  25. Li L, Lin X, Khvorova A, Fesik SW, Shen Y. Defining the optimal parameters for hairpin-based knockdown constructs. Rna. 2007;13:1765–74.

    Article  PubMed  CAS  Google Scholar 

  26. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.

    Article  PubMed  CAS  Google Scholar 

  27. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  PubMed  CAS  Google Scholar 

  28. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125:887–901.

    Article  PubMed  CAS  Google Scholar 

  29. Chenand G, Khalil N. TGF-beta1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases. Respir Res. 2006;7:2.

    Article  Google Scholar 

  30. Wu SP, Theodorescu D, Kerbel RS, Willson JK, Mulder KM, Humphrey LE, et al. TGF-beta 1 is an autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense expression vector. J Cell Biol. 1992;116:187–96.

    Article  PubMed  CAS  Google Scholar 

  31. Yan Z, Kim GY, Deng X, Friedman E. Transforming growth factor beta 1 induces proliferation in colon carcinoma cells by Ras-dependent, smad-independent down-regulation of p21cip1. J Biol Chem. 2002;277:9870–9.

    Article  PubMed  CAS  Google Scholar 

  32. Sun T, Adra S, Smallwood R, Holcombe M, MacNeil S. Exploring hypotheses of the actions of TGF-beta1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis. PLoS ONE. 2009;4:e8515.

    Article  PubMed  Google Scholar 

  33. Purps O, Lahme B, Gressner AM, Meindl-Beinker NM, Dooley S. Loss of TGF-beta dependent growth control during HSC transdifferentiation. Biochem Biophys Res Commun. 2007;353:841–7.

    Article  PubMed  CAS  Google Scholar 

  34. Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007;26:3957–67.

    Article  PubMed  CAS  Google Scholar 

  35. Saile B, Matthes N, El Armouche H, Neubauer K, Ramadori G. The bcl, NFkappaB and p53/p21WAF1 systems are involved in spontaneous apoptosis and in the anti-apoptotic effect of TGF-beta or TNF-alpha on activated hepatic stellate cells. Eur J Cell Biol. 2001;80:554–61.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This study was supported by a grant from the National Institutes of Health (to RIM, grant number: EB003922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram I. Mahato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, N., Mahato, R.I. GFAP Promoter-Driven RNA Interference on TGF-β1 to Treat Liver Fibrosis. Pharm Res 28, 752–761 (2011). https://doi.org/10.1007/s11095-011-0384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0384-y

KEY WORDS

Navigation