Skip to main content
Log in

Inhalable Sustained-Release Formulation of Glucagon: In Vitro Amyloidogenic and Inhalation Properties, and In Vivo Absorption and Bioactivity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The present study aimed to develop novel glucagon-loaded PLGA nanospheres without cytotoxic fibril formation for chronic glucagon replacement therapy.

Methods

Glucagon-loaded nanospheres (GLG/NS) were prepared by an emulsion solvent diffusion method in oil, and a respirable powder formulation (GLG/NS-RP) was prepared with a jet mill. Physicochemical and inhalation properties of GLG/NS-RP were characterized, and pharmacokinetic behavior and hyperglycemic effect of intratracheally instilled GLG/NS-RP were evaluated in rats.

Results

Although preparation of GLG/NS using glucagon solution at concentrations over 10 mg/mL led to significant formation of cytotoxic glucagon aggregates, glucagon solution at less than 5 mg/mL did not cause structural changes. Drug release behavior of GLG/NS showed a biphasic pattern with an initial burst and slow diffusion. Laser diffraction and cascade impactor analyses of GLG/NS-RP suggested high dispersion and deposition in the respiratory organs with a fine particle fraction of 20.5%. After the intratracheal administration of the GLG/NS-RP (200 μg glucagon/kg) in rats, glucagon was released in a sustained manner, leading to sustained hyperglycemic effects compared with those of normal glucagon powder.

Conclusion

These data would suggest a therapeutic benefit of the newly developed GLG/NS-RP as an alternative to the injection form of glucagon currently used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Unger RH, Dobbs RE, Orci L. Insulin, glucagon, and somatostatin secretion in the regulation of metabolism. Annu Rev Physiol. 1978;40:307–43.

    Article  PubMed  CAS  Google Scholar 

  2. Mochiki E, Suzuki H, Takenoshita S, Nagamachi Y, Kuwano H, Mizumoto A, et al. Mechanism of inhibitory effect of glucagon on gastrointestinal motility and cause of side effects of glucagon. J Gastroenterol. 1998;33:835–41.

    Article  PubMed  CAS  Google Scholar 

  3. Slezak LA, Andersen DK. Pancreatic resection: effects on glucose metabolism. World J Surg. 2001;25:452–60.

    Article  PubMed  CAS  Google Scholar 

  4. Hirota M, Ikei S, Mishima M, Mori K, Sakamoto K, Yamane T, et al. Glucagon in the metabolic and nutritional management after total pancreatectomy–a case report. Jpn J Surg. 1989;19:586–92.

    Article  PubMed  CAS  Google Scholar 

  5. Teshima D, Yamauchi A, Makino K, Kataoka Y, Arita Y, Nawata H, et al. Nasal glucagon delivery using microcrystalline cellulose in healthy volunteers. Int J Pharm. 2002;233:61–6.

    Article  PubMed  CAS  Google Scholar 

  6. Endo K, Amikawa S, Matsumoto A, Sahashi N, Onoue S. Erythritol-based dry powder of glucagon for pulmonary administration. Int J Pharm. 2005;290:63–71.

    Article  PubMed  CAS  Google Scholar 

  7. Onoue S, Yamamoto K, Kawabata Y, Hirose M, Mizumoto T, Yamada S. Novel dry powder inhaler formulation of glucagon with addition of citric acid for enhanced pulmonary delivery. Int J Pharm. 2009;382:144–50.

    Article  PubMed  CAS  Google Scholar 

  8. Okada H. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv Drug Deliv Rev. 1997;28:43–70.

    Article  PubMed  CAS  Google Scholar 

  9. Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008;97:2395–404.

    Article  PubMed  CAS  Google Scholar 

  10. Onoue S, Ohshima K, Debari K, Koh K, Shioda S, Iwasa S, et al. Mishandling of the therapeutic peptide glucagon generates cytotoxic amyloidogenic fibrils. Pharm Res. 2004;21:1274–83.

    Article  PubMed  CAS  Google Scholar 

  11. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science. 2009;325:328–32.

    Article  PubMed  CAS  Google Scholar 

  12. Merrifield RB. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:221–96.

    PubMed  CAS  Google Scholar 

  13. Kawashima Y, Yamamoto H, Takeuchi H, Hino T, Niwa T. Properties of a peptide containing DL-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. Eur J Pharm Biopharm. 1998;45:41–8.

    Article  PubMed  CAS  Google Scholar 

  14. Onoue S, Waki Y, Nagano Y, Satoh S, Kashimoto K. The neuromodulatory effects of VIP/PACAP on PC-12 cells are associated with their N-terminal structures. Peptides. 2001;22:867–72.

    Article  PubMed  CAS  Google Scholar 

  15. LeVine 3rd H. Thioflavine T interaction with synthetic Alzheimer’s disease beta- amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 1993;2:404–10.

    Article  PubMed  CAS  Google Scholar 

  16. Ikegami K, Kawashima Y, Takeuchi H, Yamamoto H, Isshiki N, Momose D, et al. Improved inhalation behavior of steroid KSR-592 in vitro with Jethaler by polymorphic transformation to needle-like crystals (beta-form). Pharm Res. 2002;19:1439–45.

    Article  PubMed  CAS  Google Scholar 

  17. Onoue S, Yajima T. Fibrillar aggregates of amyloidogenic peptides: new Insight into the neuroprotective effects of neuropeptides on fibril-induced neuronal cell death. NY: Nova Science Publishers; 2006.

    Google Scholar 

  18. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416:507–11.

    Article  PubMed  CAS  Google Scholar 

  19. Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325:172–9.

    Article  PubMed  CAS  Google Scholar 

  20. Zheng XM, Martin GP, Marriott C. Particulate interactions in dry powder formulations for inhalation. London: Taylor&Francis; 2001.

    Book  Google Scholar 

  21. Larhrib H, Martin GP, Marriott C, Prime D. The influence of carrier and drug morphology on drug delivery from dry powder formulations. Int J Pharm. 2003;257:283–96.

    Article  PubMed  CAS  Google Scholar 

  22. Maeda H, Okabayashi T, Yatabe T, Yamashita K, Hanazaki K. Perioperative intensive insulin therapy using artificial endocrine pancreas in patients undergoing pancreatectomy. World J Gastroenterol. 2009;15:4111–5.

    Article  PubMed  CAS  Google Scholar 

  23. Cryan SA. Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J. 2005;7:E20–41.

    Article  PubMed  CAS  Google Scholar 

  24. Patton JS. Pulmonary delivery of drugs for bone disorders. Adv Drug Deliv Rev. 2000;42:239–48.

    Article  PubMed  CAS  Google Scholar 

  25. Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2:198–209.

    Article  PubMed  CAS  Google Scholar 

  26. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.

    Article  PubMed  CAS  Google Scholar 

  27. Huypens P, Ling Z, Pipeleers D, Schuit F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia. 2000;43:1012–9.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for Young Scientists (B) (No.22790043; S. Onoue) from the Ministry of Education, Culture, Sports, Science and Technology, and Project of Shizuoka Prefecture and Shizuoka City Collaboration of Regional Entities for the Advancement of Technological Excellence, Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Onoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoue, S., Kuriyama, K., Uchida, A. et al. Inhalable Sustained-Release Formulation of Glucagon: In Vitro Amyloidogenic and Inhalation Properties, and In Vivo Absorption and Bioactivity. Pharm Res 28, 1157–1166 (2011). https://doi.org/10.1007/s11095-011-0379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0379-8

KEY WORDS

Navigation