Skip to main content

Phase Separation of an IgG1 Antibody Solution under a Low Ionic Strength Condition

ABSTRACT

Purpose

Phase separation of monoclonal antibody A (MAb A) solution and its relation to protein self-association are studied.

Methods

A phase diagram of MAb A and its dependence on ionic strength and pH were investigated. The protein self-associations were characterized by dynamic light scattering (DLS), analytical ultracentrifugation analysis (AUC) and viscosity measurement.

Results

MAb A solution with a clear appearance in an isotonic ionic strength condition turned opalescent in a low ionic strength condition, followed by liquid-liquid phase separation (LLPS) into light and heavy phases. The protein concentrations of the two phases were dependent on the ionic strength and pH. The two phases became reversibly miscible when the ionic strength or temperature was increased. DLS and AUC showed that MAb A under a low ionic strength condition self-associates at a protein concentration above the critical concentration of 16.5 mg/mL. The viscosity of the heavy phase was high and dependent on the shear rate. These results indicate that attractive protein-protein interaction in the heavy phase induces LLPS.

Conclusions

LLPS was induced in MAb A solution in a low ionic strength condition due to reversible protein self-association mediated mainly by attractive electrostatic interaction among the MAb A molecules in the heavy phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. 1.

    Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93:1390–402.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Minton AP. Molecular crowding: analysis of effects of high concentrations of inert consolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzymol. 1998;295:127–49.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Jiménez M, Rivas G, Minton AP. Quantitative characterization of weak self-association in concentrated solutions of immunoglobulin G via the measurement of sedimentation equilibrium and osmotic pressure. Biochemistry. 2007;46:8373–8.

    Article  PubMed  Google Scholar 

  4. 4.

    Demeule B, Lawrence MJ, Drake AF, Gurny R, Arvinte T. Characterization of protein aggregation: the case of a therapeutic immnoglobulin. Biochem Biophys Acta. 2007;1774:146–53.

    CAS  PubMed  Google Scholar 

  5. 5.

    Liu J, Nguyen MDH, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94:1928–40.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Saluja A, Badkar AV, Zeng DL, Nema S, Kalonia DS. Application of high-frequency rheology measurements for analyzing protein-protein interactions in high concentration solutions using a model antibody (IgG2). J Pharm Sci. 2006;95:1967–83.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Chari R, Jerath K, Badkar AV, Kalonia DS. Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm Res. 2010;26:2607–18.

    Article  Google Scholar 

  8. 8.

    Saluja A, Kalonia DS. Nature and consequences of protein-protein interactions in high protein concentration solutions. Int J Pharm. 2008;358:1–15.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Cromwell MEM, Felten C, Flores H, Liu J, Shire SJ. Self-association of therapeutic proteins: Implications for product development. In: Murphy RM, Tsai AM, editors. Misbehaving proteins: protein misfolding, aggregation, and stability, New York: Springer; 2006. pp 313–330.

  10. 10.

    Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation and oxidation. Crit Rev Ther Drug Carr Syst. 1993;10:307–77.

    CAS  Google Scholar 

  11. 11.

    Braun A, Kwee L, Labow MA, Alsenz J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (INF-alpha) in normal and transgenic mice. Pharm Res. 1997;14:1472–8.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharm Res. 2004;21:897–903.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Robert D, Barelli S, Crettaz D, Bart PA, Schifferli JA, Betticher D et al. Clinical proteomics: study of a cryogel. Proteomics. 2006;6:3958–60.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Yagi H, Takahashi N, Yamaguchi Y, Kato K. Temperature-dependent isologous Fab-Fab interaction that mediates cryocrystallization of a monoclonal immunoglobulin G. Mol Immunol. 2004;41:1211–5.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Narayanan J, Liu XY. Protein interactions in undersaturated and supersaturated solutions: a study using light and X-ray scattering. Biophys J. 2003;84:523–32.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci. 2010;99:82–93.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci. 2010;99:1151–68.

    Google Scholar 

  18. 18.

    Saluja A, Badkar AV, Zeng DL, Nema S, Kalonia DS. Ultrasonic storage modulus as a novel parameter for analyzing protein-protein interactions in high protein concentration solutions: correlation with static and dynamic light scattering measurements. Biophys J. 2007;92:234–44.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Saluja A, Kalonia DS. Application of ultrasonic shear rheometer to characterize rheological properties of high concentration solutions at microliter volume. J Pharm Sci. 2005;94:1161–8.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Saluja A, Badkar AV, Zeng DL, Kalonia DS. Ultrasonic rheology of a monoclonal antibody (IgG2) solution: implications for physical stability of proteins in high concentration formulations. J Pharm Sci. 2007;96:3181–95.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Patel AR, Kerwin BA, Kanapuram SR. Viscoelastic characterization of high concentration antibody formulations using quartz crystal microbalance with dissipation monitoring. J Pharm Sci. 2009;98:3108–16.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Kanai S, Liu J, Patapoff TW, Shire SJ. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. J Pharm Sci. 2008;97:4219–27.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Sukumar M, Doyle BL, Combs JL, Pekar AH. Opalescent appearance of an IgG1 antibody at high concentrations and its relationship to noncovalent association. Pharm Res. 2004;21:1087–93.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Annunziata O, Asherie N, Lomakin A, Pande J, Ogun O, Benedek GB. Effect of polyethylene glycol on the liquid-liquid phase transition in aqueous protein solutions. Proc Natl Acad Sci USA. 2002;99:14165–70.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Asakura S, Oosawa F. On interactions between two bodies immersed in a solution of macromolecules. J Chem Phys. 1954;22:1255–6.

    CAS  Google Scholar 

  26. 26.

    Jion AI, Goh LT, Oh SKW. Crystallization of IgG1 by mapping its liquid-liquid phase separation curve. Biotech Bioeng. 2006;95:911–8.

    Article  CAS  Google Scholar 

  27. 27.

    Ahamed T, Esteban BNA, Ottens M, van Dedem GW, van der Wielen LA, Bisschops MAT et al. Phase behavior of an intact monoclonal antibody. Biophy J. 2007;93:610–9.

    Article  CAS  Google Scholar 

  28. 28.

    Dumets AC, Chockla AM, Kaler EW, Lenhoff AM. Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys J. 2008;94:570–83.

    Article  Google Scholar 

  29. 29.

    Haruyama H, Ito S, Miyadai K, Takahashi T, Kawaida R, Takayama T et al. Humanization of the mouse anti-Fas antibody HFE7A and crystal structure of the humanized HFE7A Fab fragment. Biol Pharm Bull. 2002;25:1537–45.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Thomson JA, Schurtenberger P, Thurston GM, Benedek GB. Binary liquid phase separation and critical phenomena in a protein/water solution. Proc Natl Acad Sci USA. 1987;84:7079–83.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Baek SG, Magda JJ. Monolithic rheometer plate fabricated using silicon micromachining technology and containing miniature pressure sensors for N 1 and N 2 measurements. J Rheology. 2003;47:1249–60.

    Article  CAS  Google Scholar 

  32. 32.

    Pipe C, Kim NJ, McKinley G. Microfluidic Rheometery on a Chip. 2007 4th AERC, Italy

  33. 33.

    Schuck P. Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J. 2000;78:1606–19.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Tanaka T, Ishimoto C. Phase separation of a protein-water mixture in cold cataract in the young rat lens. Science. 1977;197:1010–2.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Ishimoto C, Tanaka T. Critical behavior of a binary mixture of protein and salt water. Phys Rev Lett. 1977;39:474–7.

    Article  CAS  Google Scholar 

  36. 36.

    Kato K, Sautes-Fridman C, Yamada W, Kobayashi K, Uchiyama S, Kim H et al. Structural basis of the interaction between IgG and Fcγ receptors. J Mol Biol. 2000;295:213–24.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Oda M, Uchiyama S, Noda M, Nishi Y, Koga M, Mayanagi M et al. Effects of antibody affinity and antigen valence on molecular forms of immune complexes. Mol Immunol. 2009;47:352–64.

    Article  Google Scholar 

  38. 38.

    Liu J, Andya JD, Shire SJ. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J. 2006;8:E580–9.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Pekar A, Sukumar M. Quantitation of aggregates in therapeutic proteins using sedimentation velocity analytical ultracentrifugation: practical considerations that affect precision and accuracy. Anal Biochem. 2007;367:225–37.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    George A, Wilson WW. Predicting protein crystallization from a dilute solution property. Acta Crystallogr A. 1994;D50:61–365.

    Google Scholar 

  41. 41.

    George A, Chiang Y, Guo B, Arabshahi A, Cai Z, Wilson WW. Second virial coefficient as predictor in protein crystal growth. Methods Enzymol. 1997;276:100–10.

    Article  CAS  Google Scholar 

  42. 42.

    Clark JI, Clark JM. Lens cytoplasmic phase separation. Int Rev Cytol. 2000;192:171–87.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Cromwell MEM, Carpenter JF, Scherer T, Randolph TW. Opalescence in antibody formulations is a solution critical phenomenon. Abstracts of Papers. 2008 236th ACS National Meeting, Philadelphia, PA, United States.

  44. 44.

    Cromwell MEM. Implications of phase separation on pharmaceutical development. 2009 AAPS National Biotechnology Conference, Seattle, WA, United States.

  45. 45.

    McDonald P, Victa C, Carter-Franklin JN, Fahrner R. Selective antibody precipitation using polyelectlyte: A novel approach to the purification of monoclonal antibodies. Biotech Bioeng. 2009;102:1141–51.

    Article  CAS  Google Scholar 

  46. 46.

    Matheus S, Friess W, Schwartz D, Mahler HC. Liquid high concentration IgG1 antibody formulations by precipitation. J Pharm Sci. 2009;98:3043–57.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Strandner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature. 2004;432:492–5.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We would like to thank Mr. Yuichi Shinozaki and Ms. Tazuko Watanabe (Anton Paar Japan K.K.) for the viscosity measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kiichi Fukui.

Electronic supplementary material

Fig. S1
figure10

Effect of polysorbate 80 concentation on the protein concentation in the light (●) and heavy (▲) phases at 25°C in low ionic strength buffer of 5 mM sodium phosphate, 10 mM sodium phosphate, 10 mM sodium chloride, 5% sucrose, pH 5.5 N = 3 (GIF 221 kb)

Fig. S2
figure11

Visual appearance of MAb A solution a) at 53 mg/mL and b) at 107 mg/ml in low ionic strength buffer of 5 mM sodium phosphate, 10 mM sodium chloride, 5% sucrose, pH 5.5 at ambient temperature (GIF 372 kb)

Fig. S3
figure12

Autocorrelation function obtained in DLS measurement of MAb A in isotonic ionic strength condition of 10 mM sodium phosphate, 140 mM sodium chrolide, pH 7.2 (GIF 207 kb)

Fig. S4
figure13

SEC chromatogram of MAb A before (red line) and after (Blue line) LLPS (GIF 192 kb)

High Resolution Image (TIFF 120 kb)

High Resolution Image (TIFF 651 kb)

High Resolution Image (TIFF 103 kb)

High Resolution Image (TIFF 88 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nishi, H., Miyajima, M., Nakagami, H. et al. Phase Separation of an IgG1 Antibody Solution under a Low Ionic Strength Condition. Pharm Res 27, 1348–1360 (2010). https://doi.org/10.1007/s11095-010-0125-7

Download citation

KEY WORDS

  • low ionic strength condition
  • monoclonal antibody
  • opalescence
  • phase separation
  • self-association