Pharmaceutical Research

, 27:200 | Cite as

Preclinical Evaluation of Linear HPMA-Doxorubicin Conjugates with pH-Sensitive Drug Release: Efficacy, Safety, and Immunomodulating Activity in Murine Model

  • Milada Sirova
  • Tomas Mrkvan
  • Tomas Etrych
  • Petr Chytil
  • Pavel Rossmann
  • Marketa Ibrahimova
  • Lubomir Kovar
  • Karel Ulbrich
  • Blanka Rihova
Research Paper



In vivo efficacy and safety of HPMA-based copolymers armed with doxorubicin via a spacer containing pH-sensitive linkage that can be prepared within a broad range of attached drug contents (1) was tested in murine tumor models.


Mice bearing T cell lymphoma EL4 or B cell lymphoma 38C13 were treated with a single dose of the conjugate (15, 25, and 75 mg Dox eq./kg i.v.) in a therapeutic regime. Anti-tumor resistance of the cured animals was proved by a second challenge with a lethal dose of tumor cells without additional treatment.


The content of drug bound to the polymer is an important parameter in relation to the conjugate therapeutic efficacy. The best anti-tumor effects were produced by conjugates with 10 – 13 wt% of bound doxorubicin. Free doxorubicin up to 4.6% relative to total drug content had no impact on the treatment efficacy and acute toxicity. The conjugates induced a complete cure of mice and regular treatment-dependent development of specific anti-tumor resistance. No myelosuppression or organ damage was observed.


A well-defined HPMA copolymer-doxorubicin conjugate with pH-sensitive drug release is a good candidate for clinical trials as it has remarkable anti-tumor efficacy and a favorable safety profile.


doxorubicin immunomodulation murine lymphoma N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugate tumor resistance 









high mobility group box-1




phosphate buffered saline



The work was supported by grant KAN 200200651, Premium Academiae, and Institutional Research Concept AV0Z50200510. Authors appreciate the funding support from pharmaceutical company Zentiva, k.s. (Czech Republic), and thank Mrs. Helena Mišurcová and Ms. Pavlína Jungrová for excellent technical assistance.


  1. 1.
    Etrych T, Mrkvan T, Chytil P, Konak C, Rihova B, Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J Appl Polym Sci. 2008;109:3050–61.CrossRefGoogle Scholar
  2. 2.
    Ulbrich K, Etrych T, Chytil P, Pechar M, Jelinkova M, Rihova B. Polymeric anticancer drugs with pH-controlled activation. Int J Pharm. 2004;277:63–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Kopecek J, Kopeckova P, Minko T, Lu ZR, Peterson CM. Water soluble polymers in tumor targeted delivery. J Control Release. 2001;74:147–58.CrossRefPubMedGoogle Scholar
  4. 4.
    Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20:1668–76.CrossRefPubMedGoogle Scholar
  5. 5.
    Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.CrossRefPubMedGoogle Scholar
  6. 6.
    Rihova B. Immunomodulating activities of soluble synthetic polymer-bound drugs. Adv Drug Deliv Rev. 2002;54:653–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Rihova B, Kovar L, Kovar M, Hovorka O. Cytotoxicity and immunostimulation: double attack on cancer cells with polymeric therapeutics. Trends Biotechnol. 2009;27:11–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.PubMedGoogle Scholar
  9. 9.
    Duncan R, Cable HC, Lloyd JB, Rejmanova P, Kopecek J. Polymers containing enzymatically degradable bonds 7. Design of oligopeptide side chains in poly[N-(2-hydroxypropyl)methacrylamide] copolymers to promote efficient degradation by lysosomal enzymes. Makromol Chem. 1984;184:1997–2008.CrossRefGoogle Scholar
  10. 10.
    Kratz F, Beyer U, Schutte MT. Drug-polymer conjugates containing acid-cleavable bonds. Crit Rev Ther Drug Carrier Syst. 1999;16:245–88.PubMedGoogle Scholar
  11. 11.
    Etrych T, Jelinkova M, Rihova B, Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J Control Release. 2001;73:89–102.CrossRefPubMedGoogle Scholar
  12. 12.
    Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49:4373–84.PubMedGoogle Scholar
  13. 13.
    Etrych T, Chytil P, Jelinkova M, Rihova B, Ulbrich K. Synthesis of HPMA copolymers containing doxorubicin bound via a hydrazone linkage. Effect of spacer on drug release and in vitro cytotoxicity. Macromolecular Bioscience. 2002;2:43–52.CrossRefGoogle Scholar
  14. 14.
    Kovar M, Kovar L, Subr V, Etrych T, Ulbrich K, Mrkvan T, et al.. HPMA copolymers containing doxorubicin bound by a proteolytically or hydrolytically cleavable bond: comparison of biological properties in vitro. J Control Release. 2004;99:301–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Kovar L, Strohalm J, Chytil P, Mrkvan T, Kovar M, Hovorka O, et al. The same drug but a different mechanism of action: comparison of free doxorubicin with two different N-(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugates in EL-4 cancer cell line. Bioconjug Chem. 2007;18:894–902.CrossRefPubMedGoogle Scholar
  16. 16.
    Hovorka O, Etrych T, Subr V, Strohalm J, Ulbrich K, Rihova B. HPMA based macromolecular therapeutics: internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition. J Drug Target. 2006;14:391–403.CrossRefPubMedGoogle Scholar
  17. 17.
    Rihova B, Etrych T, Pechar M, Jelinkova M, Stastny M, Hovorka O, et al. Doxorubicin bound to a HPMA copolymer carrier through hydrazone bond is effective also in a cancer cell line with a limited content of lysosomes. J Control Release. 2001;74:225–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Etrych T, Chytil P, Mrkvan T, Sirova M, Rihova B, Ulbrich K. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J Control Release. 2008;132:184–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Putnam DA, Shiah JG, Kopecek J. Intracellularly biorecognizable derivatives of 5-fluorouracil. Implications for site-specific delivery in the human condition. Biochem Pharmacol. 1996;52:957–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Ulbrich K, Subr V, Strohalm J, Plocova D, Jelinkova M, Rihova B. Polymeric drugs based on conjugates of synthetic and natural macromolecules I. Synthesis and physico-chemical characterisation. J Control Release. 2000;64:63–79.CrossRefPubMedGoogle Scholar
  21. 21.
    Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J Drug Target. 2004;12:477–89.CrossRefPubMedGoogle Scholar
  22. 22.
    Bergman Y, Haimovich J. Characterization of a carcinogen-induced murine B lymphocyte cell line of C3H/eB origin. Eur J Immunol. 1977;7:413–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Mrkvan T, Sirova M, Etrych T, Chytil P, Strohalm J, Plocova D, et al. Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity. J Control Release. 2005;110:119–29.CrossRefPubMedGoogle Scholar
  24. 24.
    Shen WC, Ryser HJ. cis-Aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem Biophys Res Commun. 1981;102:1048–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Choi W-M, Kopeckova P, Minko T, Kopecek J. Synthesis of HPMA copolymer containing adriamycin bound via an acid-labile spacer and its activity toward human ovarian carcinoma cells. J Bioact Comp Polym. 1999;14:447–56.Google Scholar
  26. 26.
    Kaneko T, Willner D, Monkovic I, Knipe JO, Braslawsky GR, Greenfield RS, et al. New hydrazone derivatives of adriamycin and their immunoconjugates-a correlation between acid stability and cytotoxicity. Bioconjug Chem. 1991;2:133–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B. HPMA copolymers with pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J Control Release. 2003;87:33–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Duncan R, Cable HC, Rejmanova P, Kopecek J, Lloyd JB. Tyrosinamide residues enhance pinocytic capture of N-(2-hydroxypropyl)methacrylamide copolymers. Biochim Biophys Acta. 1984;799:1–8.PubMedGoogle Scholar
  29. 29.
    Ulbrich K, Konák C, Tuzar Z, Kopecek J. Solution properties of drug carriers based on poly[N-(2-hydroxypropyl)methacrylamide] containing biodegradable bonds. Makromol Chem. 1987;188:1261–72.CrossRefGoogle Scholar
  30. 30.
    Seymour LW, Duncan R, Strohalm J, Kopecek J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res. 1987;21:1341–58.CrossRefPubMedGoogle Scholar
  31. 31.
    Maccubbin DL, Mace KF, Ehrke MJ, Mihich E. Modification of host antitumor defense mechanisms in mice by progressively growing tumor. Cancer Res. 1989;49:4216–24.PubMedGoogle Scholar
  32. 32.
    Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. 2001;61:771–7.PubMedGoogle Scholar
  34. 34.
    Rihova B, Kopeckova P, Strohalm J, Rossmann P, Vetvicka V, Kopecek J. Antibody-directed affinity therapy applied to the immune system: in vivo effectiveness and limited toxicity of daunomycin conjugated to HPMA copolymers and targeting antibody. Clin Immunol Immunopathol. 1988;46:100–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Rihova B, Bilej M, Vetvicka V, Ulbrich K, Strohalm J, Kopecek J, et al. Biocompatibility of N-(2-hydroxypropyl) methacrylamide copolymers containing adriamycin. Immunogenicity, and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials. 1989;10:335–42.CrossRefPubMedGoogle Scholar
  36. 36.
    Minko T, Kopeckova P, Kopecek J. Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int J Cancer. 2000;86:108–17.CrossRefPubMedGoogle Scholar
  37. 37.
    Gianasi E, Wasil M, Evagorou EG, Keddle A, Wilson G, Duncan R. HPMA copolymer platinates as novel antitumour agents: in vitro properties, pharmacokinetics and antitumour activity in vivo. Eur J Cancer. 1999;35:994–1002.CrossRefPubMedGoogle Scholar
  38. 38.
    Duncan R, Seymour LW, O’Hare KB, Flanagan PA, Wedge S, Hume IC, et al. Preclinical evaluation of polymer-bound doxorubicin. J Control Rel. 1992;19:331–46.CrossRefGoogle Scholar
  39. 39.
    Rihova B, Strohalm J, Hoste K, Jelínkova M, Hovorka O, Kovar M, et al. Immunoprotective therapy with targeted anticancer drugs. Macromol Symp. 2001;172:21–8.CrossRefGoogle Scholar
  40. 40.
    Yeung TK, Hopewell JW, Simmonds RH, Seymour LW, Duncan R, Bellini O, et al. Reduced cardiotoxicity of doxorubicin given in the form of N-(2-hydroxypropyl)methacrylamide conjugates: and experimental study in the rat. Cancer Chemother Pharmacol. 1991;29:105–11.CrossRefPubMedGoogle Scholar
  41. 41.
    Hopewel JW, Duncan R, Wilding D, Chakrabarti K. Preclinical evaluation of the cardiotoxicity of PK2: a novel HPMA copolymer-doxorubicin-galactosamine conjugate antitumour agent. Hum Exp Toxicol. 2001;20:461–70.CrossRefPubMedGoogle Scholar
  42. 42.
    Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates Cancer Research Campaign Phase I/II Committee. Clin Cancer Res. 1999;5:83–94.PubMedGoogle Scholar
  43. 43.
    Rihova B, Strohalm J, Prausova J, Kubackova K, Jelinkova M, Rozprimova L, et al. Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data. J Control Release. 2003;91:1–16.CrossRefPubMedGoogle Scholar
  44. 44.
    Rihova B, Strohalm J, Kubackova K, Jelinkova M, Rozprimova L, Sirova M, et al. Drug-HPMA-HuIg conjugates effective against human solid cancer. Adv Exp Med Biol. 2003;519:125–43.CrossRefPubMedGoogle Scholar
  45. 45.
    Rihova B, Strohalm J, Kubackova K, Jelinkova M, Hovorka O, Kovar M, et al. Acquired and specific immunological mechanisms co-responsible for efficacy of polymer-bound drugs. J Control Release. 2002;78:97–114.CrossRefPubMedGoogle Scholar
  46. 46.
    Sirova M, Strohalm J, Subr V, Plocova D, Rossmann P, Mrkvan T, et al. Treatment with HPMA copolymer-based doxorubicin conjugate containing human immunoglobulin induces long-lasting systemic anti-tumour immunity in mice. Cancer Immunol Immunother. 2007;56:35–47.CrossRefPubMedGoogle Scholar
  47. 47.
    Rihova B, Strohalm J, Kovar M, Mrkvan T, Subr V, Hovorka O, et al. Induction of systemic antitumor resistance with targeted polymers. Scand J Immunol. 2005;62:100–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Kovar M, Tomala J, Chmelova H, Kovar L, Mrkvan T, Joskova R, et al. Overcoming immunoescape mechanisms of BCL1 leukemia and induction of CD8+ T-cell-mediated BCL1-specific resistance in mice cured by targeted polymer-bound doxorubicin. Cancer Res. 2008;68:9875–83.CrossRefPubMedGoogle Scholar
  49. 49.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O, et al. Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol. 2008;20:504–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Milada Sirova
    • 1
  • Tomas Mrkvan
    • 1
  • Tomas Etrych
    • 2
  • Petr Chytil
    • 2
  • Pavel Rossmann
    • 1
  • Marketa Ibrahimova
    • 1
  • Lubomir Kovar
    • 1
  • Karel Ulbrich
    • 2
  • Blanka Rihova
    • 1
  1. 1.Laboratory of Tumor Immunology, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Department of Biomedicinal Polymers, Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations