Pharmaceutical Research

, Volume 26, Issue 9, pp 2101–2114 | Cite as

Hydrogel Matrix Entrapping PLGA-Paclitaxel Microspheres: Drug Delivery with Near Zero-Order Release and Implantability Advantages for Malignant Brain Tumour Chemotherapy

  • Sudhir Hulikal Ranganath
  • Irene Kee
  • William B. Krantz
  • Pierce Kah-Hoe Chow
  • Chi-Hwa Wang
Research Paper



To develop paclitaxel-delivering PLGA microspheres entrapped in a gel matrix with sustained drug release properties and implantability advantages for local glioma chemotherapy.


Paclitaxel-loaded PLGA microspheres were fabricated using electrohydrodynamic atomization and entrapped by electrospray and gelation. The physicochemical characterizations were performed using scanning electron microscopy and differential scanning calorimetry. The influence of various parameters on the disintegration time was investigated. In vitro release of paclitaxel was quantified using high performance liquid chromatography. Cytotoxicity of the formulations was assessed by the quantification of IC50 and caspase-3 activity against C6 glioma cells in vitro. The formulations were tested against a subcutaneous C6 glioma tumour in mice.


Highly monodisperse gel beads containing a uniform microsphere distribution were obtained. Gelation using Ca2+ ions ensured entrapment of microspheres with high loading efficiency. With an increase in the gelation time, gelling bath concentration and decrease in microsphere loading, it was more difficult to disintegrate the beads and release the microspheres. The formulations demonstrated sustained drug release for more than 60 days at a near-constant rate and a low initial burst. Cell culture studies proved the cytotoxicity against C6 glioma and improved performance in comparison to Taxol®. The formulations could reduce subcutaneous tumour volume to a greater extent compared to Taxol® and the control.


Paclitaxel-loaded PLGA microspheres entrapped in an alginate gel matrix could be potential local chemotherapy implants to treat malignant glioma with critical advantages of implantability and sustained drug release with low initial burst.


chemotherapy electrohydrodynamic atomization glioma hydrogel microspheres PLGA-paclitaxel 



The authors acknowledge the Biomedical Research Council (BMRC), A*STAR and the National University of Singapore for providing support under the grant numbers BMRC/07/1/21/19/508 and R279-000-257-731, respectively. The authors thank Alvin Yang, Ying Ying Chan, Jinghan Huang and Hui Yian Tan for technical assistance in the preparation of this manuscript and Dr. Yilong Fu for his assistance in the animal experiments.


  1. 1.
    Petri B, Bootz A, Khalansky A, Hekmatara T, Muller R, Uhl R, et al. Chemotherapy of brain tumor using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release. 2007;117:51–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Pradilla G, Wang PP, Gabikian P, Li K, Magee CA, Walter KA. Local intracerebral administration of paclitaxel with the Paclimer® delivery system: toxicity study in a canine model. J Neuro-Oncol. 2006;76:131–138.CrossRefGoogle Scholar
  3. 3.
    Limentani SA, Asher A, Heafner M, Kim JW, Fraser R. A phase I trial of surgery, Gliadel wafer implantation, and immediate postoperative carboplatin in combination with radiation therapy for primary anaplastic astrocytoma or glioblastoma multiforme. J Neuro-Oncol. 2005;72:241–244.CrossRefGoogle Scholar
  4. 4.
    von Eckardstein KL, Patt S, Kratzel C, Kiwit JCW, Reszka R. Local chemotherapy of F98 rat glioblastoma with paclitaxel and carboplatin embedded in liquid crystalline cubic phases. J Neuro-Oncol. 2005;72:209–215.CrossRefGoogle Scholar
  5. 5.
    Brem H. Polymers to treat brain tumors. Biomaterials. 1990;11:699–701.PubMedCrossRefGoogle Scholar
  6. 6.
    Tamargo RJ, Myseros JS, Epstein JI, Yang MB, Chasin M, Brem H. Interstitial chemotherapy of the 9 L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res. 1993;53:329–333.PubMedGoogle Scholar
  7. 7.
    Brem H, Mahaley MS Jr, Vick NA, Black KL, Schold SC Jr, Burger PC, et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg. 1991;74(3):441–446.PubMedCrossRefGoogle Scholar
  8. 8.
    Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-Brain Tumor Treatment Group. Lancet. 1995;345:1008–1012.PubMedCrossRefGoogle Scholar
  9. 9.
    Menei P, Boisdron-Celle M, Croue A, Guy G, Benoit JP. Effect of stereotactic implantation of biodegradable 5-flurouracil-loaded microspheres in healthy and C6 glioma-bearing rats. Neurosurg. 1996;39:117–124.CrossRefGoogle Scholar
  10. 10.
    Bellinzona M, Roser F, Matthies C, Samii M, Saini M. Biopolymer mediated suramin chemotherapy in the treatment of experimental brain tumors. Acta Oncol. 2004;43(3):259–263.PubMedCrossRefGoogle Scholar
  11. 11.
    Hsu W, Lesniak MS, Tyler B, Brem H. Local delivery of interleukin-2 and adriamycin is synergistic in the treatment of experimental malignant glioma. J Neurooncol. 2005;74:135–140.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen W, He J, Olson JJ, Lu DR. Carboplatin-loaded PLGA microspheres for intracerebral implantation: in vivo characterization. Drug Deliv. 1997;4(4):301–3111.CrossRefGoogle Scholar
  13. 13.
    Lesniak MS, Upadhyay U, Goodwin R, Tyler B, Brem H. Local delivery of doxorubicin for the treatment of malignant brain tumors in rats. Anticancer Res. 2005;28(6B):3825–3831.Google Scholar
  14. 14.
    Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic-albumin pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer. 2007;120:420–431.PubMedCrossRefGoogle Scholar
  15. 15.
    Walter KA, Cahen MA, Gur A, Tyler B, Hilton J, Colvin OM, et al. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 1994;54:2207–2212.PubMedGoogle Scholar
  16. 16.
    Prados MD, Schold SC, Spence AM, Berger MS, Mcallister LD, Mehta MP, et al. Phase II study of paclitaxel in patients with recurrent malignant glioma. J Clin Oncol. 1996;14:2316–2321.PubMedGoogle Scholar
  17. 17.
    Chamberlain MC, Kormanik P. Salvage chemotherapy with taxol for recurrent anaplastic astrocytoma. J Neurooncol. 1999;43:269–276.PubMedCrossRefGoogle Scholar
  18. 18.
    Chang SM, Kuhn JG, Robins HI, Schol SC Jr, Spence AM, Berger MS, et al. A phase II study of paclitaxel in patients with recurrent malignant glioma using different doses depending upon the concomitant use of anticonvulsants: a North American Brain Tumor Consortium report. Cancer. 2001;91:417–422.PubMedCrossRefGoogle Scholar
  19. 19.
    Glantz MJ, Choy H, Kearns CM, Mills PC, Wahlberg LU, Zuhowski EG, et al. Paclitaxel disposition in plasma and central nervous systems of humans and rats with brain tumors. J Natl Cancer Inst (Bethesda). 1995;87:1077–1081.CrossRefGoogle Scholar
  20. 20.
    Li KW, Dang W, Tyler BM, Troiano G, Tihan T, Brem H, et al. Polilactofate microspheres for paclitaxel delivery to central nervous system malignancies. Clin Cancer Res. 2003;9:3441–3447.PubMedGoogle Scholar
  21. 21.
    Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58:672–684.PubMedGoogle Scholar
  22. 22.
    Vogelhuber W, Sprub T, Bernhardt G, Buschauer A, Gopferich A. Efficacy of BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of U-87 MG human glioblastoma xenografts. Int J Pharm. 2002;238:111–121.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang J, Ng CW, Win KY, Shoemakers P, Lee TKY, Feng SS, et al. Release of paclitaxel from polylactide-co-glycolide (PLGA) microparticles and discs under irradiation. J Microencapsul. 2003;20(3):317–327.PubMedCrossRefGoogle Scholar
  24. 24.
    Ranganath SH, Wang CH. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials. 2008;29:2996–3003.PubMedCrossRefGoogle Scholar
  25. 25.
    Xie J, Marijnissen JCM, Wang CH. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials. 2006;27:3321–3332.PubMedCrossRefGoogle Scholar
  26. 26.
    Elkharraz K, Faisant N, Guse C, Siepmann F, Arica-Yegin B, Oger JM, et al. Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: Preparation and physicochemical characterization. Int J Pharm. 2006;314:127–136.PubMedCrossRefGoogle Scholar
  27. 27.
    Xie J, Wang CH. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Pharma Res. 2005;22(12):2079–2090.CrossRefGoogle Scholar
  28. 28.
    Geurin C, Olivi A, Weingart JD, Lawson HC, Brem H. Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Invest New Drugs. 2004;22:27–73.CrossRefGoogle Scholar
  29. 29.
    Joki T, Machluf M, Atala A, Zhu J, Seyfried NT, Dunn IF, et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol. 2001;19:35–39.PubMedCrossRefGoogle Scholar
  30. 30.
    Fantazzini P, Garavaglia C, Gomez S, Toffanin R, Vittur F. Chondrocyte-alginate bioconstructs: an nuclear magnetic resonance relaxation study. J Biomed Mater Res A. 2007;83A(2):345–353.CrossRefGoogle Scholar
  31. 31.
    Rokstad AM, Strand B, Rian K, Steinkjer B, Kulseng B, Skjak-Braek G, et al. Evaluation of different types of alginate microcapsules as bioreactors for producing endostatin. Cell Transplant. 2003;12:351–364.PubMedGoogle Scholar
  32. 32.
    Chen H, Ouyang W, Jones M, Metz T, Martoni C, Haque T, et al. Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy. Cell Biochem Biophys. 2007;47:159–167.PubMedCrossRefGoogle Scholar
  33. 33.
    Xie J, Wang CH. Electrospray in the dripping mode for cell microencapsulation. J Colloid Interf Sci. 2007;312:247–255.CrossRefGoogle Scholar
  34. 34.
    Soares JP, Santos JE, Chierice GO, Cavalheiro ETG. Thermal behavior of alginic acid and its sodium salt. Ecletica Quimica. 2004;29(2):53–56.Google Scholar
  35. 35.
    Xie J, Lim LK, Phua Y, Hua J, Wang CH. Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interf Sci. 2006;302:103–113.CrossRefGoogle Scholar
  36. 36.
    Dubernet C. Thermoanalysis of microspheres. Thermochimica Acta. 1995;248:259–269.CrossRefGoogle Scholar
  37. 37.
    Donth EJ. Relaxation and thermodynamics in polymers. Glass transition. Berlin: Akademie Verlag; 1992.Google Scholar
  38. 38.
    Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.PubMedCrossRefGoogle Scholar
  39. 39.
    Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–2465.PubMedCrossRefGoogle Scholar
  40. 40.
    Liu J, Meisner D, Kwong E, Wu XY, Johnston MR. A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres. Biomaterials. 2007;28:3236–3244.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sudhir Hulikal Ranganath
    • 1
  • Irene Kee
    • 2
  • William B. Krantz
    • 1
  • Pierce Kah-Hoe Chow
    • 3
    • 4
  • Chi-Hwa Wang
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.SingHealth Experimental Medicine CenterSingapore General HospitalSingaporeSingapore
  3. 3.Duke-NUS Graduate Medical SchoolSingaporeSingapore
  4. 4.Department of General SurgerySingapore General HospitalSingaporeSingapore

Personalised recommendations