Skip to main content

Advertisement

Log in

Hydrogel Matrix Entrapping PLGA-Paclitaxel Microspheres: Drug Delivery with Near Zero-Order Release and Implantability Advantages for Malignant Brain Tumour Chemotherapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop paclitaxel-delivering PLGA microspheres entrapped in a gel matrix with sustained drug release properties and implantability advantages for local glioma chemotherapy.

Methods

Paclitaxel-loaded PLGA microspheres were fabricated using electrohydrodynamic atomization and entrapped by electrospray and gelation. The physicochemical characterizations were performed using scanning electron microscopy and differential scanning calorimetry. The influence of various parameters on the disintegration time was investigated. In vitro release of paclitaxel was quantified using high performance liquid chromatography. Cytotoxicity of the formulations was assessed by the quantification of IC50 and caspase-3 activity against C6 glioma cells in vitro. The formulations were tested against a subcutaneous C6 glioma tumour in mice.

Results

Highly monodisperse gel beads containing a uniform microsphere distribution were obtained. Gelation using Ca2+ ions ensured entrapment of microspheres with high loading efficiency. With an increase in the gelation time, gelling bath concentration and decrease in microsphere loading, it was more difficult to disintegrate the beads and release the microspheres. The formulations demonstrated sustained drug release for more than 60 days at a near-constant rate and a low initial burst. Cell culture studies proved the cytotoxicity against C6 glioma and improved performance in comparison to Taxol®. The formulations could reduce subcutaneous tumour volume to a greater extent compared to Taxol® and the control.

Conclusions

Paclitaxel-loaded PLGA microspheres entrapped in an alginate gel matrix could be potential local chemotherapy implants to treat malignant glioma with critical advantages of implantability and sustained drug release with low initial burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Petri B, Bootz A, Khalansky A, Hekmatara T, Muller R, Uhl R, et al. Chemotherapy of brain tumor using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release. 2007;117:51–58.

    Article  PubMed  CAS  Google Scholar 

  2. Pradilla G, Wang PP, Gabikian P, Li K, Magee CA, Walter KA. Local intracerebral administration of paclitaxel with the Paclimer® delivery system: toxicity study in a canine model. J Neuro-Oncol. 2006;76:131–138.

    Article  CAS  Google Scholar 

  3. Limentani SA, Asher A, Heafner M, Kim JW, Fraser R. A phase I trial of surgery, Gliadel wafer implantation, and immediate postoperative carboplatin in combination with radiation therapy for primary anaplastic astrocytoma or glioblastoma multiforme. J Neuro-Oncol. 2005;72:241–244.

    Article  CAS  Google Scholar 

  4. von Eckardstein KL, Patt S, Kratzel C, Kiwit JCW, Reszka R. Local chemotherapy of F98 rat glioblastoma with paclitaxel and carboplatin embedded in liquid crystalline cubic phases. J Neuro-Oncol. 2005;72:209–215.

    Article  Google Scholar 

  5. Brem H. Polymers to treat brain tumors. Biomaterials. 1990;11:699–701.

    Article  PubMed  CAS  Google Scholar 

  6. Tamargo RJ, Myseros JS, Epstein JI, Yang MB, Chasin M, Brem H. Interstitial chemotherapy of the 9 L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res. 1993;53:329–333.

    PubMed  CAS  Google Scholar 

  7. Brem H, Mahaley MS Jr, Vick NA, Black KL, Schold SC Jr, Burger PC, et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg. 1991;74(3):441–446.

    Article  PubMed  CAS  Google Scholar 

  8. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-Brain Tumor Treatment Group. Lancet. 1995;345:1008–1012.

    Article  PubMed  CAS  Google Scholar 

  9. Menei P, Boisdron-Celle M, Croue A, Guy G, Benoit JP. Effect of stereotactic implantation of biodegradable 5-flurouracil-loaded microspheres in healthy and C6 glioma-bearing rats. Neurosurg. 1996;39:117–124.

    Article  CAS  Google Scholar 

  10. Bellinzona M, Roser F, Matthies C, Samii M, Saini M. Biopolymer mediated suramin chemotherapy in the treatment of experimental brain tumors. Acta Oncol. 2004;43(3):259–263.

    Article  PubMed  CAS  Google Scholar 

  11. Hsu W, Lesniak MS, Tyler B, Brem H. Local delivery of interleukin-2 and adriamycin is synergistic in the treatment of experimental malignant glioma. J Neurooncol. 2005;74:135–140.

    Article  PubMed  CAS  Google Scholar 

  12. Chen W, He J, Olson JJ, Lu DR. Carboplatin-loaded PLGA microspheres for intracerebral implantation: in vivo characterization. Drug Deliv. 1997;4(4):301–3111.

    Article  CAS  Google Scholar 

  13. Lesniak MS, Upadhyay U, Goodwin R, Tyler B, Brem H. Local delivery of doxorubicin for the treatment of malignant brain tumors in rats. Anticancer Res. 2005;28(6B):3825–3831.

    Google Scholar 

  14. Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic-albumin pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer. 2007;120:420–431.

    Article  PubMed  CAS  Google Scholar 

  15. Walter KA, Cahen MA, Gur A, Tyler B, Hilton J, Colvin OM, et al. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 1994;54:2207–2212.

    PubMed  CAS  Google Scholar 

  16. Prados MD, Schold SC, Spence AM, Berger MS, Mcallister LD, Mehta MP, et al. Phase II study of paclitaxel in patients with recurrent malignant glioma. J Clin Oncol. 1996;14:2316–2321.

    PubMed  CAS  Google Scholar 

  17. Chamberlain MC, Kormanik P. Salvage chemotherapy with taxol for recurrent anaplastic astrocytoma. J Neurooncol. 1999;43:269–276.

    Article  PubMed  CAS  Google Scholar 

  18. Chang SM, Kuhn JG, Robins HI, Schol SC Jr, Spence AM, Berger MS, et al. A phase II study of paclitaxel in patients with recurrent malignant glioma using different doses depending upon the concomitant use of anticonvulsants: a North American Brain Tumor Consortium report. Cancer. 2001;91:417–422.

    Article  PubMed  CAS  Google Scholar 

  19. Glantz MJ, Choy H, Kearns CM, Mills PC, Wahlberg LU, Zuhowski EG, et al. Paclitaxel disposition in plasma and central nervous systems of humans and rats with brain tumors. J Natl Cancer Inst (Bethesda). 1995;87:1077–1081.

    Article  CAS  Google Scholar 

  20. Li KW, Dang W, Tyler BM, Troiano G, Tihan T, Brem H, et al. Polilactofate microspheres for paclitaxel delivery to central nervous system malignancies. Clin Cancer Res. 2003;9:3441–3447.

    PubMed  CAS  Google Scholar 

  21. Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58:672–684.

    PubMed  CAS  Google Scholar 

  22. Vogelhuber W, Sprub T, Bernhardt G, Buschauer A, Gopferich A. Efficacy of BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of U-87 MG human glioblastoma xenografts. Int J Pharm. 2002;238:111–121.

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Ng CW, Win KY, Shoemakers P, Lee TKY, Feng SS, et al. Release of paclitaxel from polylactide-co-glycolide (PLGA) microparticles and discs under irradiation. J Microencapsul. 2003;20(3):317–327.

    Article  PubMed  CAS  Google Scholar 

  24. Ranganath SH, Wang CH. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials. 2008;29:2996–3003.

    Article  PubMed  CAS  Google Scholar 

  25. Xie J, Marijnissen JCM, Wang CH. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials. 2006;27:3321–3332.

    Article  PubMed  CAS  Google Scholar 

  26. Elkharraz K, Faisant N, Guse C, Siepmann F, Arica-Yegin B, Oger JM, et al. Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: Preparation and physicochemical characterization. Int J Pharm. 2006;314:127–136.

    Article  PubMed  CAS  Google Scholar 

  27. Xie J, Wang CH. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Pharma Res. 2005;22(12):2079–2090.

    Article  CAS  Google Scholar 

  28. Geurin C, Olivi A, Weingart JD, Lawson HC, Brem H. Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Invest New Drugs. 2004;22:27–73.

    Article  Google Scholar 

  29. Joki T, Machluf M, Atala A, Zhu J, Seyfried NT, Dunn IF, et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol. 2001;19:35–39.

    Article  PubMed  CAS  Google Scholar 

  30. Fantazzini P, Garavaglia C, Gomez S, Toffanin R, Vittur F. Chondrocyte-alginate bioconstructs: an nuclear magnetic resonance relaxation study. J Biomed Mater Res A. 2007;83A(2):345–353.

    Article  CAS  Google Scholar 

  31. Rokstad AM, Strand B, Rian K, Steinkjer B, Kulseng B, Skjak-Braek G, et al. Evaluation of different types of alginate microcapsules as bioreactors for producing endostatin. Cell Transplant. 2003;12:351–364.

    PubMed  CAS  Google Scholar 

  32. Chen H, Ouyang W, Jones M, Metz T, Martoni C, Haque T, et al. Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy. Cell Biochem Biophys. 2007;47:159–167.

    Article  PubMed  CAS  Google Scholar 

  33. Xie J, Wang CH. Electrospray in the dripping mode for cell microencapsulation. J Colloid Interf Sci. 2007;312:247–255.

    Article  CAS  Google Scholar 

  34. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG. Thermal behavior of alginic acid and its sodium salt. Ecletica Quimica. 2004;29(2):53–56.

    Google Scholar 

  35. Xie J, Lim LK, Phua Y, Hua J, Wang CH. Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interf Sci. 2006;302:103–113.

    Article  CAS  Google Scholar 

  36. Dubernet C. Thermoanalysis of microspheres. Thermochimica Acta. 1995;248:259–269.

    Article  Google Scholar 

  37. Donth EJ. Relaxation and thermodynamics in polymers. Glass transition. Berlin: Akademie Verlag; 1992.

    Google Scholar 

  38. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.

    Article  PubMed  CAS  Google Scholar 

  39. Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–2465.

    Article  PubMed  CAS  Google Scholar 

  40. Liu J, Meisner D, Kwong E, Wu XY, Johnston MR. A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres. Biomaterials. 2007;28:3236–3244.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors acknowledge the Biomedical Research Council (BMRC), A*STAR and the National University of Singapore for providing support under the grant numbers BMRC/07/1/21/19/508 and R279-000-257-731, respectively. The authors thank Alvin Yang, Ying Ying Chan, Jinghan Huang and Hui Yian Tan for technical assistance in the preparation of this manuscript and Dr. Yilong Fu for his assistance in the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hwa Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranganath, S.H., Kee, I., Krantz, W.B. et al. Hydrogel Matrix Entrapping PLGA-Paclitaxel Microspheres: Drug Delivery with Near Zero-Order Release and Implantability Advantages for Malignant Brain Tumour Chemotherapy. Pharm Res 26, 2101–2114 (2009). https://doi.org/10.1007/s11095-009-9922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9922-2

KEY WORDS

Navigation