Pharmaceutical Research

, Volume 26, Issue 6, pp 1398–1406 | Cite as

A Novel Hydrophilic Adhesive Matrix with Self-Enhancement for Drug Percutaneous Permeation Through Rat Skin

  • Jianhua Zhang
  • Zhipeng Liu
  • Hai Du
  • Yong Zeng
  • Liandong Deng
  • Jinfeng Xing
  • Anjie Dong
Research Paper



In transdermal drug delivery system (TDDS), chemical enhancers and crystallization inhibitors added into the adhesive matrixes to improve drug permeation and formulation stability often result in some negative effect on adhesive properties and dressing performance. The aim of this paper is to develop a hydrophilic pressure sensitive adhesive (PSA) for TDDS without using additional chemical enhancers and crystallization inhibitors.


A quaternary blend (PDGW) composed of polyvinyl pyrrolidone, D,L-lactic acid oligomers, glycerol and water was prepared. The adhesive strength, drug loading capacity, drug state and stability of PDGW were characterized by using ibuprofen (IBU) and salicylic acid (SA) as model drugs. Moreover, In vitro and in vivo drug permeation through rat skin from PDGW patch in comparison to acrylate adhesive (ACA) and nature rubber adhesive (NRA) was investigated.


PDGW performs excellent drug loading and crystallization inhibition capacity. Furthermore, the accumulative amount for 24 h in vitro from PDGW patch is far higher than that from ACA and NRA patch. And the plasma concentration of drugs in vivo from PDGW patch is bigger than that from ACA patch.


PDGW possesses excellent PSA properties and self-enhancement for drug percutaneous permeation, which can be used to develop new formulation of TDDS.


D,L-lactic acid oligomers hydrophilic adhesive matrix polyvinyl pyrrolidone transdermal drug delivery system 



This project was supported by the National Natural Science Foundation of China (Number 30672554).

Supplementary material

11095_2009_9850_MOESM1_ESM.doc (72 kb)
ESM 1 (DOC 72.0 kb)


  1. 1.
    A. M. Wokovich, S. Prodduturi, W. H. Doub, A. S. Hussain, and L. F. Buhse. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm. 64:1–8 (2006). doi: 10.1016/j.ejpb.2006.03.009.PubMedCrossRefGoogle Scholar
  2. 2.
    C. Valenta, and B.G. Auner. The use of polymers for dermal and transdermal delivery. Eur. J. Pharm. Biopharm. 58:279–289 (2004). doi: 10.1016/j.ejpb.2004.02.017.PubMedCrossRefGoogle Scholar
  3. 3.
    S. Venkatraman, and R. Gale. Skin adhesives and skin adhesion: 1. Transdermal drug delivery systems. Biomaterials. 19:1119–1136 (1998). doi: 10.1016/S0142-9612(98)00020-9.PubMedCrossRefGoogle Scholar
  4. 4.
    H. S. Tan, and W.R. Pfister. Pressure-sensitive adhesives for transdermal drug delivery systems. PSTT. 2:60–69 (1999).Google Scholar
  5. 5.
    S. Mitragotri. Synergistic effect of enhancers for transdermal drug delivery. Pharm. Res. 17:1354–1359 (2000). doi: 10.1023/A:1007522114438.PubMedCrossRefGoogle Scholar
  6. 6.
    A. C. Williams, and B. W. Barry. Penetration enhancers. Adv. Drug. Deli. Rev. 56:603–618 (2004). doi: 10.1016/j.addr.2003.10.025.CrossRefGoogle Scholar
  7. 7.
    S. M. Taghizadeh, and F. Lahootifard. Effect of different skin permeation enhancers on peel strength of an acrylic PSA. J. Appl. Polym. Sci. 90:2987–2991 (2003). doi: 10.1002/app.12931.CrossRefGoogle Scholar
  8. 8.
    S. R. Trenor, A.E. Suggs, and B.J. Love. Influence of penetration enhancers on the thermomechanical properties and peel strength of a poly(isobutylene) pressure sensitive adhesive. J. Mater. Sci. Lett. 21:1321–1323 (2002). doi: 10.1023/A:1019748112291.CrossRefGoogle Scholar
  9. 9.
    P. N. Kotiyan, and P.R. Vavia. Eudragits: role as crystallization inhibitors in drug in adhesive transdermal systems of estradiol. Eur. J. Pharm. Biopharm. 52:173–180 (2001). doi: 10.1016/S0939-6411(01)00174-6.PubMedCrossRefGoogle Scholar
  10. 10.
    F. Cilurzo, P. Minghetti, A. Casiraghi, L. Tosi, S. Pagani, and L. Montanari. Polymethacrylates as crystallization inhibitors in monolayer transdermal patches containing Ibuprofen. Eur. J. Pharm. Biopharm. 60:61–66 (2005). doi: 10.1016/j.ejpb.2005.02.001.PubMedCrossRefGoogle Scholar
  11. 11.
    M. M. Feldstein, V. N. Tohmakhchi, L.B. Malkhazov, A.E. Vasiliev, and N.A. Platé. Hydrophilic polymeric matrixes for enhanced transdermal drug delivery. Int. J. Pharm. 131:229–242 (1996). doi: 10.1016/0378-5173(95)04351-9.CrossRefGoogle Scholar
  12. 12.
    T. Loftsson, and A.M. Sigurðardóttir. The effect of polyvinylpyrrolidone and hydroxypropyl methylcellulose on HPβCD complexation of hydrocortisone and its permeability through hairless mouse skin. Eur. J. Pharm. Sci. 2:297–301 (1994). doi: 10.1016/0928-0987(94)90013-2.CrossRefGoogle Scholar
  13. 13.
    B. Mukherjee, S. Mahapatra, R. Gupta, B. Patra, A. Tiwari, and P. Arora. A comparison between povidone–ethylcellulose and povidone–eudragit transdermal dexamethasone matrix patches based on in vitro skin permeation. Eur. J. Pharm. Biopharm. 59:475–483 (2005). doi: 10.1016/j.ejpb.2004.09.009.PubMedCrossRefGoogle Scholar
  14. 14.
    J. H. Zhang, L. D. Deng, H. J. Zhao, M. Liu, H. J. Jin, J. Q. Li, and A. J. Dong. Pressure sensitive adhesive properties of poly(N-vinyl pyrrolidone)/D,L-lactic acid oligomer/glycerol/water blends for TDDS. J. Biomater. Sci. Polym. Ed (2009). doi: 10.1163/156856209X410111.
  15. 15.
    N. Wang, and X. S. Wu. Synthesis, characterization, biodegradation and drug delivery application of biodegradable lactic/glycolic acid oligomers: Part II. Biodegradation and drug delivery application. J. Biomater. Sci. Polym. Ed. 9:75–87 (1997). doi: 10.1163/156856297X00272.PubMedCrossRefGoogle Scholar
  16. 16.
    M. Aqil, and A. Ali. Monolithic matrix type transdermal drug delivery systems of pinacidil monohydrate: in vitro characterization. Eur. J. Pharm. Biopharm. 54:161–164 (2002). doi: 10.1016/S0939-6411(02)00059-0.PubMedCrossRefGoogle Scholar
  17. 17.
    W. H. Gardner. Water content. In A. Kline (ed.), Methods of Soil Analysis, 2nd ed. American Society of Agronomy, Madison, WI, 1986, pp. 493–544.Google Scholar
  18. 18.
    A. Gal, and A. Nussinovitch. Plasticizers in the manufacture of novel skin-bioadhesive patches. Int. J. Pharm. doi: 10.1016/j.ijpharm. 2008.11.015 (2008).
  19. 19.
    M. J. Maurice. The determination of carboxyl groups in polycaprolactam. Anal. Chim. Acta. 26:406–409 (1962). doi: 10.1016/S0003-2670(00)88406-8.CrossRefGoogle Scholar
  20. 20.
    S. M. Al-Saidan. Transdermal self-permeation enhancement of ibuprofen. J. Control. Release. 100:199–209 (2004). doi: 10.1016/j.jconrel.2004.08.011.PubMedCrossRefGoogle Scholar
  21. 21.
    N. H. Gabboun, N.M. Najib, H.G. Ibrahim, and S. Assaf. Release of salicylic acid, diclofenac acid and diclofenac acid salts from isotropic and anisotropic nonionic surfactant systems across rat skin. Int. J. Pharm. 212:73–80 (2001). doi: 10.1016/S0378-5173(00)00585-8.PubMedCrossRefGoogle Scholar
  22. 22.
    L. Simonsen, A. Jørgensen, E. Benfeldt, and L. Groth. Differentiated in vivo skin penetration of salicylic compounds in hairless rats measured by cutaneous microdialysis. Eur. J. Pharm Sci. 21:379–388 (2004). doi: 10.1016/j.ejps.2003.11.004.PubMedCrossRefGoogle Scholar
  23. 23.
    J. H. Kim, and H.K. Choi. Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int. J. Pharm. 236:81–85 (2002). doi: 10.1016/s0378-5173(02)00017-0.PubMedGoogle Scholar
  24. 24.
    S. Y. Lin, C.J. Lee, and Y.Y. Lin. Drug–polymer interaction affecting the mechanical properties, adhesion strength and release kinetics of piroxicam-loaded Eudragit E films plasticized with different plasticizers. J. Control. Release. 33:375–381 (1995). doi: 10.1016/0168-3659(94)00109-8.CrossRefGoogle Scholar
  25. 25.
    D. G. Maillard-Salin, Ph. Bécourt, and G. Couarraze. A study of the adhesive–skin interface: correlation between adhesion and passage of a drug. Int. J. Pharm. 200:121–126 (2000). doi: 10.1016/S0378-5173(00)00369-0.PubMedCrossRefGoogle Scholar
  26. 26.
    T. Kokubo, K. Sugibayashi, and Y. Morimoto. Interaction between drugs and pressure-sensitive adhesives in transdermal therapeutic systems. Pharm. Res. 11:104–107 (1994). doi: 10.1023/A:1018906013527.PubMedCrossRefGoogle Scholar
  27. 27.
    K. Y. Ho, and K. Dodou. Rheological studies on pressure-sensitive silicone adhesives and drug-in-adhesive layers as a means to characterise adhesive performance. Int. J. Pharm. 333:24–33 (2007). doi: 10.1016/j.ijpharm.2006.09.043.PubMedCrossRefGoogle Scholar
  28. 28.
    J. Hirvonen, J. H. Rytting, P. Paronen, and A. Urtti. Dodecyl N,N-dimethylamino acetate and azone enhance drug penetration across human, snake, and rabbit skin. Pharm. Res. 8:933–936 (1991). doi: 10.1023/A:1015824100788.PubMedCrossRefGoogle Scholar
  29. 29.
    X. H. Ma, J. Taw, and C.M. Chinan. Control of drug crystallization in transdermal matrix system. Int. J. Pharm. 142:115–119 (1996). doi: 10.1016/0378-5173(96)04647-9.CrossRefGoogle Scholar
  30. 30.
    K. H. Ziller, and H. Rupprecht. Control of crystal growth in drug suspensions. Drug Dev. Ind. Pharm. 14:2341–2370 (1988). doi: 10.3109/03639048809152019.CrossRefGoogle Scholar
  31. 31.
    L. S. Taylor, and G. Zografi. Spectroscopic characterization of interaction between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–1697 (1997). doi: 10.1023/A:1012167410376.PubMedCrossRefGoogle Scholar
  32. 32.
    M. Yoshioka, B.C. Hancock, and G. Zografi. Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J. Pharm. Sci. 84:983–986 (1995). doi: 10.1002/jps.2600840814.PubMedCrossRefGoogle Scholar
  33. 33.
    N. M. Najib, M. Suleiman, and A. Malakh. Characteristics of the in vitro release of ibuprofen from polyvinylpyrrolidone solid dispersions. Int. J. Pharm. 32:229–236 (1986). doi: 10.1016/0378-5173(86)90183-3.CrossRefGoogle Scholar
  34. 34.
    B. Yuan, C. McGlinchey, and E. M. Pearce. Explanation of tackifier effect on the viscoelastic properties of polyolefin-based pressure sensitive adhesives. J. Appl. Polym. Sci. 99:2408–2413 (2006). doi: 10.1002/app.22820.CrossRefGoogle Scholar
  35. 35.
    M. B. Novikov, A. Roos, C. Creton, and M. M. Feldstein. Dynamic mechanical and tensile properties of poly(N-vinyl pyrrolidone)–poly(ethylene glycol) blends. Polymer. 44:3561–3578 (2003). doi: 10.1016/S0032-3861(03)00132-0.CrossRefGoogle Scholar
  36. 36.
    P. R. Rao, M. N. Reddy, S. Ramakrishna, and P. V. Diwan. Comparative in vivo evaluation of propranolol hydrochloride after oral and transdermal administration in rabbits. Eur. J. Pharm. Biopharm. 56:81–85 (2003). doi: 10.1016/S0939-6411(03)00038-9.PubMedCrossRefGoogle Scholar
  37. 37.
    J. M. Barichello, N. Yamakawa, M. Kisyuku, H. Handa, T. Shibata, T. Ishida, and H. Kiwada. Combined effect of liposomalization and addition of glycerol on the transdermal delivery of isosorbide 5-nitrate in rat skin. Int. J. Pharm. 357:199–205 (2008). doi: 10.1016/j.ijpharm.2008.01.052.PubMedCrossRefGoogle Scholar
  38. 38.
    M. Hara, and A.S. Verkman. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 100:7360–7365 (2003). doi: 10.1073/pnas.1230416100.PubMedCrossRefGoogle Scholar
  39. 39.
    O. Diez-Sales, A. C. Watkinson, M. Herráez-Dominguez, C. Javaloyes, and J. Hadgraft. A mechanistic investigation of the in vitro human skin permeation enhancing effect of Azone. Int. J. Pharm. 129:33–40 (1996). doi: 10.1016/0378-5173(95)04237-7.CrossRefGoogle Scholar
  40. 40.
    S. C. Chi, E. S. Park, and H. Kim. Effect of penetration enhancers on flurbiprofen permeation through rat skin. Int. J. Pharm. 126:267–274 (1995). doi: 10.1016/0378-5173(95)04137-0.CrossRefGoogle Scholar
  41. 41.
    J. Y. Fang, T. L. Hwang, C. L. Fang, and H. C. Chiu. In vitro and in vivo evaluations of the efficacy and safety of skin permeation enhancers using flurbiprofen as a model drug. Int. J. Pharm. 255:153–166 (2003). doi: 10.1016/S0378-5173(03)00086-3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jianhua Zhang
    • 1
  • Zhipeng Liu
    • 2
  • Hai Du
    • 2
  • Yong Zeng
    • 3
  • Liandong Deng
    • 2
  • Jinfeng Xing
    • 2
  • Anjie Dong
    • 1
    • 2
  1. 1.School of Material Science and EngineeringTianjin UniversityTianjinChina
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  3. 3.Tianjin Institute of Pharmaceutical ResearchTianjinChina

Personalised recommendations