Advertisement

Pharmaceutical Research

, Volume 26, Issue 7, pp 1581–1589 | Cite as

Evaluation of Pharmacokinetics of Bioreducible Gene Delivery Vectors by Real-time PCR

  • Qing-Hui Zhou
  • Chao Wu
  • Devika Soundara Manickam
  • David Oupický
Research Paper

Abstract

Purpose

To investigate pharmacokinetics of reversibly stabilized DNA nanoparticles (rSDN) using a single-step lysis RT-PCR.

Methods

rSDN were prepared by coating bioreducible polycation/DNA polyplexes with multivalent N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. Targeted polyplexes were formulated by linking cyclic RGD ligand (c(RGDyK)) to the HPMA surface layer of rSDN. The pharmacokinetic parameters in tumor-bearing mice were analyzed by PKAnalyst®.

Results

The pharmacokinetics of naked plasmid DNA, simple DNA polyplexes, rSDN, and RGD-targeted rSDN exhibited two-compartment model characteristics with area under the blood concentration–time curve (AUC) increasing from 1,102 ng∙ml−1∙min−1 for DNA to 3,501 ng∙ml−1∙min−1 for rSDN. Non-compartment model analysis revealed increase in mean retention time (MRT) from 4.5 min for naked DNA to 22.9 min for rSDN.

Conclusions

RT-PCR is a sensitive and convenient method suitable for analyzing pharmacokinetics and biodistribution of DNA polyplexes. Surface stabilization of DNA polyplexes can significantly extend their MRT and AUC compared to naked DNA. DNA degradation in rSDN in blood circulation, due to a combined effect of disulfide reduction and competitive reactions with charged molecules in the blood, contributes to DNA elimination.

KEY WORDS

gene delivery pharmacokinetics real-time PCR tumor targeting 

Abbreviations

AUC

Area under the blood concentration–time curve

GSH

Glutathione

HPMA

N-(2-hydroxypropyl)methacrylamide

LC–MS

Liquid chromatography–mass spectroscopy

MRT

Mean retention time

PAA

Poly-l-aspartic acid

PK

Pharmacokinetics

PLL

Poly-l-lysine

RGD

Arginine–glycine–aspartic acid

rPLL

Reducible poly-l-lysine

rSDN

Reversibly-stabilized DNA nanoparticles, i.e. rPLL/DNA complexes coated with HPMA copolymer

RT-PCR

Real-time polymerase chain reaction

Notes

Acknowledgements

This research was financially supported by the National Institutes of Health (CA 109711). We thank Drs. Amjad and Cha of the Anti-Infective Research Laboratory of Wayne State University for help with RT-PCR.

References

  1. 1.
    C. Kretz-Remy, and A. P. Arrigo. Gene expression and thiol redox state. Methods Enzymol. 348:200–215 (2002) doi: 10.1016/S0076-6879(02)48639-9.PubMedCrossRefGoogle Scholar
  2. 2.
    A. Meister, and M. E. Anderson. Glutathione. Annu. Rev. Biochem. 52:711–760 (1983) doi: 10.1146/annurev.bi.52.070183.003431.PubMedCrossRefGoogle Scholar
  3. 3.
    M. J. Staal, R. I. Hogen Esch, R. Tomasini, R. Kraayenbrink, I. P. Kema, R. M. Buijs, K. G. Go, F. Zuiderveen, and C. H. Buys. Qualitative and quantitative examination of rat and human fetal dopaminergic grafts. Stereotact. Funct. Neurosurg. 54–55:290–296 (1990) doi: 10.1159/000100225.PubMedCrossRefGoogle Scholar
  4. 4.
    G. Bellomo, M. Vairetti, L. Stivala, F. Mirabelli, P. Richelmi, and S. Orrenius. Demonstration of nuclear compartmentalization of glutathione in hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 89:4412–4416 (1992) doi: 10.1073/pnas.89.10.4412.PubMedCrossRefGoogle Scholar
  5. 5.
    L. H. Lash, D. A. Putt, S. E. Hueni, W. Cao, F. Xu, S. J. Kulidjian, and J. P. Horwitz. Cellular energetics and glutathione status in NRK-52E cells: toxicological implications. Biochem. Pharmacol. 64:1533–1546 (2002) doi: 10.1016/S0006-2952(02)01360-6.PubMedCrossRefGoogle Scholar
  6. 6.
    D. M. Townsend, K. D. Tew, and H. Tapiero. The importance of glutathione in human disease. Biomed. Pharmacother. 57:145–155 (2003) doi: 10.1016/S0753-3322(03)00043-X.PubMedCrossRefGoogle Scholar
  7. 7.
    Q. H. Zhou, D. L. Miller, R. C. Carlisle, L. W. Seymour, and D. Oupicky. Ultrasound-enhanced transfection activity of HPMA-stabilized DNA polyplexes with prolonged plasma circulation. J. Control Release. 106:416–427 (2005) doi: 10.1016/j.jconrel.2005.05.002.PubMedCrossRefGoogle Scholar
  8. 8.
    D. Oupicky, A. L. Parker, and L. W. Seymour. Laterally stabilized complexes of DNA with linear reducible polycations: strategy for triggered intracellular activation of DNA delivery vectors. J. Am. Chem. Soc. 124:8–9 (2002) doi: 10.1021/ja016440n.PubMedCrossRefGoogle Scholar
  9. 9.
    M. Beverly, K. Hartsough, and L. Machemer. Liquid chromatography/electrospray mass spectrometric analysis of metabolites from an inhibitory RNA duplex. Rapid Commun. Mass. Spectrom. 19:1675–1682 (2005) doi: 10.1002/rcm.1972.PubMedCrossRefGoogle Scholar
  10. 10.
    M. Berg, A. Parbel, H. Pettersen, D. Fenyo, and L. Bjorkesten. Reproducibility of LC–MS-based protein identification. J. Exp. Bot. 57:1509–1514 (2006) doi: 10.1093/jxb/erj139.PubMedCrossRefGoogle Scholar
  11. 11.
    N. Fang, S. Yu, and T. M. Badger. LC–MS/MS analysis of lysophospholipids associated with soy protein isolate. J. Agric. Food Chem. 51:6676–6682 (2003) doi: 10.1021/jf034793v.PubMedCrossRefGoogle Scholar
  12. 12.
    M. T. Davis, and T. D. Lee. Rapid protein identification using a microscale electrospray LC/MS system on an ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 9:194–201 (1998) doi: 10.1016/S1044-0305(97)00282-1.PubMedCrossRefGoogle Scholar
  13. 13.
    C. W. Tuthill, A. Rudolph, Y. Li, B. Tan, T. J. Fitzgerald, S. R. Beck, and Y. X. Li. Quantitative analysis of thymosin alpha1 in human serum by LC–MS/MS. AAPS PharmSciTech. 1:E11 (2000) doi: 10.1208/pt010211.PubMedCrossRefGoogle Scholar
  14. 14.
    O. Germershaus, M. Neu, M. Behe, and T. Kissel. HER2 targeted polyplexes: the effect of polyplex composition and conjugation chemistry on in vitro and in vivo characteristics. Bioconjug. Chem. 19:244–253 (2008) doi: 10.1021/bc700311n.PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Yang, Y. Park, S. Man, Y. Liu, and K. G. Rice. Cross-linked low molecular weight glycopeptide-mediated gene delivery: relationship between DNA metabolic stability and the level of transient gene expression in vivo. J. Pharm. Sci. 90:2010–2022 (2001) doi: 10.1002/jps.1152.PubMedCrossRefGoogle Scholar
  16. 16.
    G. Osaka, K. Carey, A. Cuthbertson, P. Godowski, T. Patapoff, A. Ryan, T. Gadek, and J. Mordenti. Pharmacokinetics, tissue distribution, and expression efficiency of plasmid [33P]DNA following intravenous administration of DNA/cationic lipid complexes in mice: use of a novel radionuclide approach. J. Pharm. Sci. 85:612–618 (1996) doi: 10.1021/js9504494.PubMedCrossRefGoogle Scholar
  17. 17.
    B. E. Houk, R. Martin, G. Hochhaus, and J. A. Hughes. Pharmacokinetics of plasmid DNA in the rat. Pharm. Res. 18:67–74 (2001) doi: 10.1023/A:1011078711008.PubMedCrossRefGoogle Scholar
  18. 18.
    G. J. Jeong, H. M. Byun, J. M. Kim, H. Yoon, H. G. Choi, W. K. Kim, S. J. Kim, and Y. K. Oh. Biodistribution and tissue expression kinetics of plasmid DNA complexed with polyethylenimines of different molecular weight and structure. J. Control Release. 118:118–125 (2007) doi: 10.1016/j.jconrel.2006.12.009.PubMedCrossRefGoogle Scholar
  19. 19.
    Y. K. Oh, J. P. Kim, H. Yoon, J. M. Kim, J. S. Yang, and C. K. Kim. Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Ther. 8:1587–1592 (2001) doi: 10.1038/sj.gt.3301516.PubMedCrossRefGoogle Scholar
  20. 20.
    Y. K. Oh, J. P. Kim, T. S. Hwang, J. J. Ko, J. M. Kim, J. S. Yang, and C. K. Kim. Nasal absorption and biodistribution of plasmid DNA: an alternative route of DNA vaccine delivery. Vaccine. 19:4519–4525 (2001) doi: 10.1016/S0264-410X(01)00188-8.PubMedCrossRefGoogle Scholar
  21. 21.
    D. Oupicky, K. A. Howard, C. Konak, P. R. Dash, K. Ulbrich, and L. W. Seymour. Steric stabilization of poly-L-Lysine/DNA complexes by the covalent attachment of semitelechelic poly[N-(2-hydroxypropyl)methacrylamide]. Bioconjug. Chem. 11:492–501 (2000) doi: 10.1021/bc990143e.PubMedCrossRefGoogle Scholar
  22. 22.
    D. Oupicky, M. Ogris, K. A. Howard, P. R. Dash, K. Ulbrich, and L. W. Seymour. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol. Ther. 5:463–472 (2002) doi: 10.1006/mthe.2002.0568.PubMedCrossRefGoogle Scholar
  23. 23.
    D. Mazhar, and J. Waxman. Gene therapy for prostate cancer. BJU Int. 93:465–469 (2004) doi: 10.1111/j.1464-410X.2003.04652.x.PubMedCrossRefGoogle Scholar
  24. 24.
    K. M. Dittmar, J. Xie, F. Hunter, C. Trimble, M. Bur, V. Frenkel, and K. C. Li. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience. Radiology. 235:541–546 (2005) doi: 10.1148/radiol.2352040254.PubMedCrossRefGoogle Scholar
  25. 25.
    C. M. Ward, M. Pechar, D. Oupicky, K. Ulbrich, and L. W. Seymour. Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo. J. Gene Med. 4:536–547 (2002) doi: 10.1002/jgm.296.PubMedCrossRefGoogle Scholar
  26. 26.
    P. R. Dash, M. L. Read, L. B. Barrett, M. A. Wolfert, and L. W. Seymour. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 6:643–650 (1999) doi: 10.1038/sj.gt.3300843.PubMedCrossRefGoogle Scholar
  27. 27.
    L. H. Wei, T. Olafsen, C. Radu, I. J. Hildebrandt, M. R. Mccoy, M. E. Phelps, C. Meares, A. M. Wu, J. Czernin, and W. A. Weber. Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J. Nucl. Med. 49:1828–1835 (2008) doi: 10.2967/jnumed.108.054452.PubMedCrossRefGoogle Scholar
  28. 28.
    S. N. Tamkovich, A. V. Cherepanova, E. V. Kolesnikova, E. Y. Rykova, D. V. Pyshnyi, V. V. Vlassov, and P. P. Laktionov. Circulating DNA and DNase activity in human blood. Ann. N.Y. Acad. Sci. 1075:191–196 (2006).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Reitz, and P. Gutjahr. Acid DNase activities in peripheral, mononuclear blood-cells—a possible parameter to detect proliferating cell-populations. Z. Nat. forsch., C- J. Biosci. 47:910–914 (1992).Google Scholar
  30. 30.
    K. Umemori, A. Nishikawa, and S. Tanuma. Purification and characterization of a DNase gamma-like endonuclease from Xenopus laevis liver. Apoptosis. 3:145–153 (1998) doi: 10.1023/A:1009663204558.PubMedCrossRefGoogle Scholar
  31. 31.
    J. S. Roth, and S. Hilton. The effect of whole-body x-irradiation on the distribution of acid deoxyribonuclease and beta-galactosidase in subcellular fractions of rat spleen. Radiat. Res. 19:42–49 (1963) doi: 10.2307/3571408.PubMedCrossRefGoogle Scholar
  32. 32.
    D. Giustarini, I. Dalle-Donne, S. Lorenzini, A. Milzani, and R. Rossi. Age-related influence on thiol, disulfide, and protein-mixed disulfide levels in human plasma. J. Gerontol. A. Biol. Sci. Med. Sci. 61:1030–1038 (2006).PubMedGoogle Scholar
  33. 33.
    P. M. Mullen, C. P. Lollo, Q. C. Phan, A. Amini, M. G. Banaszczyk, J. M. Fabrycki, D. Wu, A. T. Carlo, P. Pezzoli, C. C. Coffin, and D. J. Carlo. Strength of conjugate binding to plasmid DNA affects degradation rate and expression level in vivo. Biochim. Biophys. Acta. 1523:103–110 (2000).PubMedGoogle Scholar
  34. 34.
    W. L. Liu, M. Stevenson, L. W. Seymour, and K. D. Fisher. Quantification of siRNA using competitive qPCR. Nucleic Acids Res. 37:e4 (2009).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Stratford, S. Stec, V. Jadhav, J. Seitzer, M. Abrams, and M. Beverly. Examination of real-time polymerase chain reaction methods for the detection and quantification of modified siRNA. Anal. Biochem. 379:96–104 (2008) doi: 10.1016/j.ab.2008.05.001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qing-Hui Zhou
    • 1
  • Chao Wu
    • 1
  • Devika Soundara Manickam
    • 1
  • David Oupický
    • 1
  1. 1.Department of Pharmaceutical SciencesWayne State UniversityDetroitUSA

Personalised recommendations