Advertisement

Pharmaceutical Research

, 27:56 | Cite as

Local Delivery of Ferrociphenol Lipid Nanocapsules Followed by External Radiotherapy as a Synergistic Treatment Against Intracranial 9L Glioma Xenograft

  • Emilie Allard
  • Delphine Jarnet
  • Anne Vessières
  • Sandrine Vinchon-Petit
  • Gérard Jaouen
  • Jean-Pierre Benoit
  • Catherine Passirani
Research Paper

Abstract

Purpose

The goal of the present study was to evaluate the efficacy of a new organometallic drug, ferrociphenol (Fc-diOH), in combination with external radiotherapy in intracerebral 9L glioma model. We tested the hypothesis that the combination of external radiotherapy with Fc-diOH could potentiate the action of this drug.

Methods

9L cells were treated with Fc-diOH-LNCs (from 0.01 to 1 µmol/L) and irradiated with external radiotherapy (from 2 to 40 Gy). In vivo assessment was evaluated by the inoculation of 9L cells in Fisher rats. Chemotherapy with Fc-diOH-LNCs (0.36 mg/rat) was administered by means of convection-enhanced delivery (CED), and the treatment was followed by three irradiations of 6 Gy doses (total dose = 18 Gy).

Results

In vitro evaluations evidenced that a combined treatment with Fc-diOH-LNCs and irradiations showed synergistic antitumor activity on 9L cells. Combining cerebral irradiation with CED of Fc-diOH-LNCs led to a significantly longer survival and the existence of long-term survivors compared to Fc-diOH-LNCs-treated animals (p < 0.0001) and to the group treated with blank LNCs + radiotherapy (p = 0.0079).

Conclusion

The synergistic effect between ferrociphenol-loaded LNCs and radiotherapy was due to a closely oxidative relationship. Upon these considerations, Fc-diOH-LNCs appear to be an efficient radiosensitive anticancer drug delivery system.

Key Words

convection-enhanced delivery glioma iron lipid nanocapsules radiotherapy 

Notes

Acknowledgments

The authors would like to thank Emilien Porcher, N. Trinh Huynh (Inserm U646, Angers, France), and Pierre Legras (Service Commun d’Animalerie Hospitalo-Universitaire, Angers, France) for skillful technical support with animals, and Elisabeth Hillard for English corrections. This work was supported by a “Région des Pays de la Loire” grant, by the “Cancéropôle Grand Ouest” and by “La Ligue Nationale Contre le Cancer” (équipe labellisée 2007).

References

  1. 1.
    Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Lonardi S, Tosoni A, Brandes AA. Adjuvant chemotherapy in the treatment of high grade gliomas. Cancer Treat Rev. 2005;31:79–89.CrossRefPubMedGoogle Scholar
  3. 3.
    Sawyer AJ, Piepmeier JM, Saltzman WM. New methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med. 2006;79:141–52.PubMedGoogle Scholar
  4. 4.
    Wang PP, Frazier J, Brem H. Local drug delivery to the brain. Adv Drug Deliv Rev. 2002;54:987–1013.CrossRefPubMedGoogle Scholar
  5. 5.
    Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91:2076–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL. High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol. 1994;266:R292–305.PubMedGoogle Scholar
  7. 7.
    Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg. 2004;100:472–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Rousseau J, Boudou C, Barth RF, Balosso J, Esteve F, Elleaume H. Enhanced survival and cure of F98 glioma-bearing rats following intracerebral delivery of carboplatin in combination with photon irradiation. Clin Cancer Res. 2007;13:5195–201.CrossRefPubMedGoogle Scholar
  9. 9.
    Neeves KB, Sawyer AJ, Foley CP, Saltzman WM, Olbricht WL. Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles. Brain Res. 2007;1180:121–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Noble CO, Krauze MT, Drummond DC, Yamashita Y, Saito R, Berger MS, et al. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res. 2006;66:2801–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Mamot C, Nguyen JB, Pourdehnad M, Hadaczek P, Saito R, Bringas JR, et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol. 2004;68:1–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Allard E, Hindre F, Passirani C, Lemaire L, Lepareur N, Noiret N, et al. (188)Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas. Eur J Nucl Med Mol Imaging. 2008;35:1838–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Saito R, Krauze MT, Noble CO, Drummond DC, Kirpotin DB, Berger MS, et al. Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro Oncol. 2006;8:205–14.CrossRefPubMedGoogle Scholar
  14. 14.
    Allard E, Passirani C, Benoit JP. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials. 2009;30:2302–18.CrossRefPubMedGoogle Scholar
  15. 15.
    Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379:201–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Allard E, Passirani C, Garcion E, Pigeon P, Vessieres A, Jaouen G, et al. Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J Control Release. 2008;130:146–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Vessieres A, Top S, Pigeon P, Hillard E, Boubeker L, Spera D, et al. Modification of the estrogenic properties of diphenols by the incorporation of ferrocene. Generation of antiproliferative effects in vitro. J Med Chem. 2005;48:3937–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Top S, Vessieres A, Leclercq G, Quivy J, Tang J, Vaissermann J, et al. Synthesis, biochemical properties and molecular modelling studies of organometallic specific estrogen receptor modulators (SERMs), the ferrocifens and hydroxyferrocifens: evidence for an antiproliferative effect of hydroxyferrocifens on both hormone-dependent and hormone-independent breast cancer cell lines. Chem Eur J. 2003;9:5223–36.CrossRefGoogle Scholar
  19. 19.
    Hillard E, Vessieres A, Thouin L, Jaouen G, Amatore C. Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen-type breast-cancer drug candidates. Angew Chem Int Ed. 2006;45:285–90.CrossRefGoogle Scholar
  20. 20.
    Allard E, Huynh NT, Vessieres A, Pigeon P, Jaouen G, Benoit JP, et al. Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model. Int J Pharm. 2009;379:317–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Jaouen G, Top S, Vessieres A, Leclercq G, Quivy J, Jin L, et al. The first organometallic antioestrogens and their antiproliferative effects. CR Acad Sci Ser IIc. 2000;3:89–93.Google Scholar
  22. 22.
    Berenbaum MC. A method for testing for synergy with any number of agents. J Infect Dis. 1978;137:122–30.PubMedGoogle Scholar
  23. 23.
    Fresco P, Borges F, Diniz C, Marques MP. New insights on the anticancer properties of dietary polyphenols. Med Res Rev. 2006;26:747–66.CrossRefPubMedGoogle Scholar
  24. 24.
    Shankar S, Ganapathy S, Srivastava RK. Green tea polyphenols: biology and therapeutic implications in cancer. Front Biosci. 2007;12:4881–99.CrossRefPubMedGoogle Scholar
  25. 25.
    Hillard E, Vessieres A, Le Bideau F, Plazuk D, Spera D, Huche M, et al. A series of unconjugated ferrocenyl phenols: prospects as anticancer agents. ChemMedChem. 2006;1:551–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Hillard EA, Pigeon P, Vessieres A, Amatore C, Jaouen G. The influence of phenolic hydroxy substitution on the electron transfer and anti-cancer properties of compounds based on the 2-ferrocenyl-1-phenyl-but-1-ene motif. Dalton Trans 2007;5073–81.Google Scholar
  27. 27.
    Nguyen A, Marsaud V, Bouclier C, Top S, Vessieres A, Pigeon P, et al. Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment. Int J Pharm. 2008;347:128–35.CrossRefPubMedGoogle Scholar
  28. 28.
    Buriez O, Heldt JM, Labbe E, Vessieres A, Jaouen G, Amatore C. Reactivity and antiproliferative activity of ferrocenyl-tamoxifen adducts with cyclodextrins against hormone-independent breast-cancer cell lines. Chemistry In press 2008.Google Scholar
  29. 29.
    Laperriere N, Zuraw L, Cairncross G. Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol. 2002;64:259–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Bencokova Z, Pauron L, Devic C, Joubert A, Gastaldo J, Massart C, et al. Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neurooncol. 2008;86:13–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Larsonand DA, Wara WM. Radiotherapy of primary malignant brain tumors. Semin Surg Oncol. 1998;14:34–42.CrossRefGoogle Scholar
  32. 32.
    Berg G, Blomquist E, Cavallin-Stahl E. A systematic overview of radiation therapy effects in brain tumours. Acta Oncol. 2003;42:582–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Mardor Y, Rahav O, Zauberman Y, Lidar Z, Ocherashvilli A, Daniels D, et al. Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Cancer Res. 2005;65:6858–63.CrossRefPubMedGoogle Scholar
  34. 34.
    Perlstein B, Ram Z, Daniels D, Ocherashvilli A, Roth Y, Margel S, et al. Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring. Neuro Oncol. 2008;10:153–61.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Emilie Allard
    • 1
  • Delphine Jarnet
    • 2
  • Anne Vessières
    • 3
  • Sandrine Vinchon-Petit
    • 1
    • 2
  • Gérard Jaouen
    • 3
  • Jean-Pierre Benoit
    • 1
  • Catherine Passirani
    • 1
  1. 1.Inserm U646, Pôle pharmaceutique, CHU d’AngersUniversité d’AngersAngersFrance
  2. 2.Centre Régional de Lutte Contre le CancerCentre Paul PapinAngersFrance
  3. 3.UMR CNRS 7223, Ecole Nationale Supérieure de Chimie de ParisParis cedex 05France

Personalised recommendations