Pharmaceutical Research

, Volume 26, Issue 4, pp 883–892 | Cite as

Grapefruit Juice and its Constituents Augment Colchicine Intestinal Absorption: Potential Hazardous Interaction and the Role of P-Glycoprotein

  • Arik Dahan
  • Gordon L. Amidon
Research Paper



To investigate the potential interaction between grapefruit juice (GFJ) and the oral microtubule polymerization inhibitor colchicine, a P-gp and CYP3A4 substrate.


Colchicine intestinal epithelial transport was investigated across Caco-2 cell monolayers in both AP–BL and BL–AP directions, in the absence/presence of known P-gp inhibitors (verapamil and quinidine). The concentration-dependent effects of GFJ and its major constituents (6′-7′-dihydroxybergamottin, naringin and naringenin) on colchicine Caco-2 mucosal secretion were examined. The effect of GFJ on colchicine intestinal-permeability was then investigated in-situ in the rat perfusion model, in both jejunum and ileum.


Colchicine exhibited 20-fold higher BL–AP than AP–BL Caco-2 permeability, indicative of net mucosal secretion, which was reduced by verapamil/quinidine. Colchicine AP–BL permeability was increased and BL–AP was decreased by GFJ in a concentration-dependent manner (IC50 values of 0.75% and 0.46% respectively), suggesting inhibition of efflux transport, rather than metabolizing enzyme. Similar effects obtained following pre-experiment incubation with GFJ, even though the juice was not present throughout the transepithelial study. 6′-7′-Dihydroxybergamottin, naringin and naringenin displayed concentration-dependent inhibition on colchicine BL–AP secretion (IC50 values of 90, 592 and 11.6 μM respectively). Ten percent GFJ doubled colchicine rat in-situ ileal permeability, and increased 1.5-fold jejunal permeability.


The data suggest that GFJ may augment colchicine oral bioavailability. Due to colchicine narrow therapeutic-index and severely toxic side-effects, awareness of this interaction is prudent.


colchicine drug interaction grapefruit juice intestinal permeability P-glycoprotein 


  1. 1.
    D. G. Bailey, J. D. Spence, B. Edgar, C. D. Bayliff, and J. M. O. Arnold. Ethanol enhances the hemodynamic-effects of felodipine. Clin. Invest. Med. 12:357–362 (1989).PubMedGoogle Scholar
  2. 2.
    D. G. Bailey, J. Malcolm, O. Arnold, and J. D. Spence. Grapefruit juice–drug interactions. Br. J. Clin. Pharmacol. 46:101–110 (1998) doi: 10.1046/j.1365-2125.1998.00764.x.PubMedCrossRefGoogle Scholar
  3. 3.
    D. G. Bailey, J. D. Spence, C. Munoz, and J. M. O. Arnold. Interaction of citrus juices with felodipine and nifedipine. Lancet. 337:268–269 (1991) doi: 10.1016/0140-6736(91)90872-M.PubMedCrossRefGoogle Scholar
  4. 4.
    L. J. Brunner, K.-S. Pai, M. Y. Munar, M. B. Lande, A. J. Olyaei, and J. A. Mowry. Effect of grapefruit juice on cyclosporin A pharmacokinetics in pediatric renal transplant patients. Pediatr. Transplant. 4:313–321 (2000) doi: 10.1034/j.1399-3046.2000.00136.x.PubMedCrossRefGoogle Scholar
  5. 5.
    U. I. Schwarz, P. E. Johnston, D. G. Bailey, R. B. Kim, G. Mayo, and A. Milstone. Impact of citrus soft drinks relative to grapefruit juice on ciclosporin disposition. Br. J. Clin. Pharmacol. 62:485–491 (2006) doi: 10.1111/j.1365-2125.2005.02519.x.PubMedCrossRefGoogle Scholar
  6. 6.
    J. J. Lilja, K. T. Kivisto, and P. J. Neuvonen. Grapefruit juice–simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin. Pharmacol. Ther. 64:477–483 (1998) doi: 10.1016/S0009-9236(98)90130-8.PubMedCrossRefGoogle Scholar
  7. 7.
    V. Andersen, N. Pedersen, N.-E. Larsen, J. Sonne, and S. Larsen. Intestinal first pass metabolism of midazolam in liver cirrhosis; effect of grapefruit juice. Br. J. Clin. Pharmacol. 54:120–124 (2002) doi: 10.1046/j.1365-2125.2002.01615.x.PubMedCrossRefGoogle Scholar
  8. 8.
    H. H. T. Kupferschmidt, K. E. Fattinger, H. R. Ha, F. Follath, and S. Krahenbuhl. Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br. J. Clin. Pharmacol. 45:355–359 (1998) doi: 10.1046/j.1365-2125.1998.t01-1-00687.x.PubMedCrossRefGoogle Scholar
  9. 9.
    H. Spahn-Langguth, and P. Langguth. Grapefruit juice enhances intestinal absorption of the P-glycoprotein substrate talinolol. Eur. J. Pharm. Sci. 12:361 (2001) doi: 10.1016/S0928-0987(00)00191-3.PubMedCrossRefGoogle Scholar
  10. 10.
    A. Dahan, and H. Altman. Food–drug interaction: grapefruit juice augments drug bioavailability—mechanism, extent and relevance. Eur. J. Clin. Nutr. 58:1 (2004) doi: 10.1038/sj.ejcn.1601736.PubMedCrossRefGoogle Scholar
  11. 11.
    G. C. Kane, and J. J. Lipsky. Drug–grapefruit juice interactions. Mayo Clin. Proc. 75:933–942 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    S. U. Mertens-Talcott, I. Zadezensky, W. V. De Castro, H. Derendorf, and V. Butterweck. Grapefruit–drug interactions: can interactions with drugs be avoided? J. Clin. Pharmacol. 46:1390–1416 (2006) doi: 10.1177/0091270006294277.PubMedCrossRefGoogle Scholar
  13. 13.
    E. Ben-Chetrit, and M. Levy. Colchicine: 1998 update. Semin. Arthritis Rheum. 28:48 (1998) doi: 10.1016/S0049-0172(98)80028-0.PubMedCrossRefGoogle Scholar
  14. 14.
    R. A. Terkeltaub. Gout. N. Engl. J. Med. 349:1647–1655 (2003) doi: 10.1056/NEJMcp030733.PubMedCrossRefGoogle Scholar
  15. 15.
    H. Amital, and E. Ben-Chetrit. Therapeutic approaches to familial Mediterranean fever. What do we know and where are we going to? Clin. Exp. Rheumatol. 22:S4–S7 (2004).PubMedGoogle Scholar
  16. 16.
    C. Dinarello, S. Wolff, S. Goldfinger, D. Dale, and D. Alling. Colchicine therapy for familial mediterranean fever. A double-blind trial. N. Engl. J. Med. 291:934–937 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    M. M. Kaplan, and M. E. Gershwin. Primary biliary cirrhosis. N. Engl. J. Med. 353:1261–1273 (2005) doi: 10.1056/NEJMra043898.PubMedCrossRefGoogle Scholar
  18. 18.
    D. Alarcon-Segovia, F. Ramos-Niembro, G. Ibanez de Kasep, J. Alcocer, and R. Tamayo. Long-term evaluation of colchicine in the treatment of scleroderma. J. Rheumatol. 6:705–712 (1979).PubMedGoogle Scholar
  19. 19.
    J. Leighton, M. Bay, A. Maldonado, R. Johnson, S. Schenker, and K. Speeg. The effect of liver dysfunction on colchicine pharmacokinetics in the rat. Hepatology. 11:210–215 (1990) doi: 10.1002/hep.1840110209.PubMedCrossRefGoogle Scholar
  20. 20.
    T. Tateishi, P. Soucek, Y. Caraco, F. P. Guengerich, and A. J. J. Wood. Colchicine biotransformation by human liver microsomes: identification of cyp3A4 as the major isoform responsible for colchicine demethylation. Biochem. Pharmacol. 53:111 (1997) doi: 10.1016/S0006-2952(96)00693-4.PubMedCrossRefGoogle Scholar
  21. 21.
    B. Bittner, A. Guenzi, P. Fullhardt, G. Zuercher, R. Gonzalez, and R. Mountfield. Improvement of the bioavailability of colchicine in rats by co-administration of D-alpha-tocopherol polyethylene glycol 1000 succinate and a polyethoxylated derivative of 12-hydroxy-stearic acid. Arzneimittelforschung. 52:684–688 (2002).PubMedGoogle Scholar
  22. 22.
    J. M. Dintaman, and J. A. Silverman. Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm. Res. 16:1550 (1999) doi: 10.1023/A:1015000503629.PubMedCrossRefGoogle Scholar
  23. 23.
    G. M. Ferron, M. Rochdi, W. J. Jusko, and J. M. Scherrmann. Oral absorption characteristics and pharmacokinetics of colchicine in healthy volunteers after single and multiple doses. J. Clin. Pharmacol. 36:874–883 (1996).PubMedGoogle Scholar
  24. 24.
    M. Rochdi, A. Sabouraud, C. Girre, R. Venet, and J. Scherrmann. Pharmacokinetics and absolute bioavailability of colchicine after i.v. and oral administration in healthy human volunteers and elderly subjects. Eur. J. Clin. Pharmacol. 46:351–354 (1994) doi: 10.1007/BF00194404.PubMedCrossRefGoogle Scholar
  25. 25.
    A. Goldbart, J. Press, S. Sofer, and J. Kapelushnik. Near fatal acute colchicine intoxication in a child. A case report. Eur. J. Pediatr. 159:895 (2000) doi: 10.1007/PL00008364.PubMedCrossRefGoogle Scholar
  26. 26.
    M. J. Maxwell, P. Muthu, and P. E. Pritty. Accidental colchicine overdose. A case report and literature review. Emerg. Med. J. 19:265–266 (2002) doi: 10.1136/emj.19.3.265.PubMedCrossRefGoogle Scholar
  27. 27.
    J. Ting. Acute pancreatitis related to therapeutic dosing with colchicine: a case report. J. Med. Case Reports. 1:64 (2007) doi: 10.1186/1752-1947-1-64.PubMedCrossRefGoogle Scholar
  28. 28.
    J. Gao, O. Murase, R. L. Schowen, J. Aube, and R. T. Borchardt. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm. Res. 18:171 (2001) doi: 10.1023/A:1011076217118.PubMedCrossRefGoogle Scholar
  29. 29.
    P. Anderle, E. Niederer, W. Rubas, C. Hilgendorf, H. Spahn-Langguth, H. Wunderli-Allenspach, H. P. Merkle, and P. Langguth. P-glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci. 87:757–762 (1998) doi: 10.1021/js970372e.PubMedCrossRefGoogle Scholar
  30. 30.
    I. Hidalgo, T. Raub, and R. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96:736–749 (1989).PubMedGoogle Scholar
  31. 31.
    J. S. Kim, S. Mitchell, P. Kijek, Y. Tsume, J. Hilfinger, and G. L. Amidon. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol. Pharmaceutics. 3:686–694 (2006) doi: 10.1021/mp060042f.CrossRefGoogle Scholar
  32. 32.
    E. Lipka, H. Lennernas, and G. L. Amidon. Interspecies correlation of permeability estimates: the feasibility of animal data for predicting oral absorption in humans. Pharm. Res. 12:S–311 (1995).Google Scholar
  33. 33.
    A. Dahan, B. T. West, and G. L. Amidon. Segmental-dependent membrane permeability along the intestine following oral drug administration: evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat. Eur. J. Pharm. Sci. in press (2008) doi: 10.1021/mp800088f.
  34. 34.
    U. Fagerholm, M. Johansson, and H. Lennernas. Comparison between permeability coefficients in rat and human jejunum. Pharm. Res. 13:1336–1342 (1996) doi: 10.1023/A:1016065715308.PubMedCrossRefGoogle Scholar
  35. 35.
    A. Yussim, N. Bar-Nathan, S. Lustig, E. Shaharabani, E. Geier, D. Shmuely, R. Nakache, and Z. Shapira. Gastrointestinal, hepatorenal, and neuromuscular toxicity caused by cyclosporine-colchicine interaction in renal transplantation. Transplant. Proc. 26:2825–2826 (1994).PubMedGoogle Scholar
  36. 36.
    U. Troger, H. Lins, J.-M. Scherrmann, C.-W. Wallesch, and S. M. Bode-Boger. Tetraparesis associated with colchicine is probably due to inhibition by verapamil of the P-glycoprotein efflux pump in the blood–brain barrier. BMJ. 331:613 (2005).PubMedCrossRefGoogle Scholar
  37. 37.
    Y. Caraco, C. Putterman, R. Rahamimov, and E. Ben-Chetrit. Acute colchicine intoxication—possible role of erythromycin administration. J. Rheumatol. 19:494–496 (1992).PubMedGoogle Scholar
  38. 38.
    I. F. N. Hung, A. K. L. Wu, V. C. C. Cheng, B. S. F. Tang, K. W. To, C. K. Yeung, P. C. Y. Woo, S. K. P. Lau, B. M. Y. Cheung, and K. Y. Yuen. Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study. Clin. Infect. Dis. 41:291–300 (2005) doi: 10.1086/431592.PubMedCrossRefGoogle Scholar
  39. 39.
    J. Torgovnick, N. Sethi, and E. Arsura. Colchicine and HMG Co-A reductase inhibitors induced myopathy—a case report. Neurotoxicology. 27:1126–1127 (2006) doi: 10.1016/j.neuro.2006.09.003.PubMedCrossRefGoogle Scholar
  40. 40.
    X. Cao, L. X. Yu, C. Barbaciru, C. P. Landowski, H. C. Shin, S. Gibbs, H. A. Miller, G. L. Amidon, and D. Sun. Permeability dominates in vivo intestinal absorption of P-gp substrate with high solubility and high permeability. Mol. Pharmaceutics. 2:329–340 (2005) doi: 10.1021/mp0499104.CrossRefGoogle Scholar
  41. 41.
    I. Gonzalez-Alvarez, C. Fernandez-Teruel, V. G. Casabo-Alos, T. M. Garrigues, J. E. Polli, A. Ruiz-Garcia, and M. Bermejo. In situ kinetic modelling of intestinal efflux in rats: functional characterization of segmental differences and correlation with in vitro results. Biopharm. Drug Dispos. 28:229–239 (2007) doi: 10.1002/bdd.548.PubMedCrossRefGoogle Scholar
  42. 42.
    B. Valenzuela, A. Nacher, P. Ruiz-Carretero, A. Martin-Villodre, G. Lopez-Carballo, and D. Barettino. Profile of P-glycoprotein distribution in the rat and its possible influence on the salbutamol intestinal absorption process. J. Pharm. Sci. 93:1641–1648 (2004) doi: 10.1002/jps.20071.PubMedCrossRefGoogle Scholar
  43. 43.
    G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413 (1995) doi: 10.1023/A:1016212804288.PubMedCrossRefGoogle Scholar
  44. 44.
    N. A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennernas, A. S. Hussain, H. E. Junginger, S. A. Stavchansky, K. K. Midha, V. P. Shah, and G. L. Amidon. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharmaceutics. 1:85–96 (2004) doi: 10.1021/mp034006h.CrossRefGoogle Scholar
  45. 45.
    A. Dahan and G. L. Amidon. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol. Pharmaceutics in press (2008) doi: 10.1016/j.ejps.2008.10.013.
  46. 46.
    C. Girre, G. Thomas, J. Scherrmann, J. Crouzette, and P. Fournier. Model-independent pharmacokinetics of colchicine after oral administration to healthy volunteers. Fundam. Clin. Pharmacol. 3:537–543 (1989).PubMedCrossRefGoogle Scholar
  47. 47.
    H. Lennernas. Animal data: the contributions of the Ussing chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv. Drug Deliv. Rev. 59:1103 (2007) doi: 10.1016/j.addr.2007.06.016.PubMedCrossRefGoogle Scholar
  48. 48.
    L. X. Yu, E. Lipka, J. R. Crison, and G. L. Amidon. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv. Drug Deliv. Rev. 19:359 (1996) doi: 10.1016/0169-409X(96)00009-9.PubMedCrossRefGoogle Scholar
  49. 49.
    J. Lundahl, C. Regardh, B. Edgar, and G. Johnsson. Relationship between time of intake of grapefruit juice and its effect on pharmacokinetics and pharmacodynamics of felodipine in healthy subjects. Eur. J. Clin. Pharmacol. 49:61–67 (1995) doi: 10.1007/BF00192360.PubMedCrossRefGoogle Scholar
  50. 50.
    H. Takanaga, A. Ohnishi, H. Murakami, H. Matsuo, S. Higuchi, A. Urae, S. Irie, H. Furuie, K. Matsukuma, M. Kimura, K. Kawano, Y. Orii, T. Tanaka, and Y. Sawada. Relationship between time after intake of grapefruit juice and the effect on pharmacokinetics and pharmacodynamics of nisoldipine in healthy subjects. Clin. Pharmacol. Ther. 67:201 (2000) doi: 10.1067/mcp.2000.104215.PubMedCrossRefGoogle Scholar
  51. 51.
    J. J. Lilja, K. T. Kivisto, and P. J. Neuvonen. Duration of effect of grapefruit juice on the pharmacokinetics of the CYP3A4 substrate simvastatin[ast]. Clin. Pharmacol. Ther. 68:384 (2000) doi: 10.1067/mcp.2000.110216.PubMedCrossRefGoogle Scholar
  52. 52.
    W. V. De Castro, S. Mertens-Talcott, H. Derendorf, and V. Butterweck. Grapefruit juice–drug interactions: grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J. Pharm. Sci. 96:2808–2817 (2007) doi: 10.1002/jps.20975.PubMedCrossRefGoogle Scholar
  53. 53.
    W. V. De Castro, S. Mertens-Talcott, A. Rubner, V. Butterweck, and H. Derendorf. Variation of flavonoids and furanocoumarins in grapefruit juices: a potential source of variability in grapefruit juice–drug interaction studies. J. Agric. Food Chem. 54:249–255 (2006) doi: 10.1021/jf0516944.PubMedCrossRefGoogle Scholar
  54. 54.
    B. Ameer, R. A. Weintraub, J. V. Johnson, R. A. Yost, and R. L. Rouseff. Flavanone absorption after naringin, hesperidin, and citrus administration. Clin. Pharmacol. Ther. 60:34 (1996) doi: 10.1016/S0009-9236(96)90164-2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of PharmacyUniversity of MichiganAnn ArborUSA

Personalised recommendations