Advertisement

Pharmaceutical Research

, 26:691 | Cite as

Towards More Realistic In Vitro Release Measurement Techniques for Biodegradable Microparticles

  • D. Klose
  • N. Azaroual
  • F. Siepmann
  • G. Vermeersch
  • J. Siepmann
Research Paper

Abstract

Purpose

To better understand the importance of the environmental conditions for drug release from biodegradable microparticles allowing for the development of more appropriate in vitro release measurement techniques.

Methods

Propranolol HCl diffusion in various agarose gels was characterized by NMR and UV analysis. Fick’s law was used to theoretically predict the mass transport kinetics. Drug release from PLGA-based microparticles in such agarose gels was compared to that measured in agitated bulk fluids (“standard” method).

Results

NMR analysis revealed that the drug diffusivity was almost independent of the hydrogel concentration, despite of the significant differences in the systems’ mechanical properties. This is due to the small size of the drug molecules/ions with respect to the hydrogel mesh size. Interestingly, the theoretically predicted drug concentration-distance-profiles could be confirmed by independent experiments. Most important from a practical point of view, significant differences in the release rates from the same batch of PLGA-based microparticles into a well agitated bulk fluid versus a semi-solid agarose gel were observed.

Conclusion

Great care must be taken when defining the in vitro conditions for drug release measurements from biodegradable microparticles. The obtained new insight can help facilitating the development of more appropriate in vitro release testing procedures.

KEY WORDS

agarose gel diffusion microparticles PLGA release test 

Notes

Acknowledgements

The authors are grateful for the support of this work by the French Association for Cancer Research “ARC” (“Association pour la Recherche sur le Cancer”: postdoctoral fellowship for Dr. Florence Siepmann and doctoral fellowship for Mrs. Diana Klose). The NMR facilities were funded by the “Nord-Pas de Calais” Regional Council, the French Ministry and European Regional Development Fonds (FEDER).

References

  1. 1.
    P. B. O’Donnell, and J.W. McGinity. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 28:25–42 (1997). doi: 10.1016/S0169-409X(97)00049-5.PubMedCrossRefGoogle Scholar
  2. 2.
    S. Freiberg, and X. X. Zhu. Polymer microspheres for controlled drug release. Int. J. Pharm. 282:1–18 (2004). doi: 10.1016/j.ijpharm.2004.04.013.PubMedCrossRefGoogle Scholar
  3. 3.
    G. E. Visscher, R. L. Robison, H. V. Maulding, J. W. Fong, J. E. Pearson, and G. J. Argentieri. Biodegradation of and tissue reaction to 50:50 poly(dl-lactide-co-glycolide) microcapsules. J. Biomed. Mater. Res. 19:349–365 (1985). doi: 10.1002/jbm.820190315.PubMedCrossRefGoogle Scholar
  4. 4.
    J. M. Anderson, and M. S. Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5–24 (1997). doi: 10.1016/S0169-409X(97)00048-3.PubMedCrossRefGoogle Scholar
  5. 5.
    J. C. Middleton, and A. J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 21:2335–2346 (2000). doi: 10.1016/S0142-9612(00)00101-0.PubMedCrossRefGoogle Scholar
  6. 6.
    L. Wu, and J. Ding. In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 25:5821–5830 (2004). doi: 10.1016/j.biomaterials.2004.01.038.PubMedCrossRefGoogle Scholar
  7. 7.
    E. Fournier, C. Passirani, C. N. Montero-Menei, and J. P. Benoit. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials. 24:3311–3331 (2003). doi: 10.1016/S0142-9612(03)00161-3.PubMedCrossRefGoogle Scholar
  8. 8.
    P. Menei, E. Jadaud, N. Faisant, M. Boisdron-Celle, S. Michalak, D. Fournier, M. Delhaye, and J. P. Benoit. Stereotaxic implantation of 5-Fluorouracil-releasing microspheres in malignant glioma. Cancer. 100:405–410 (2004). doi: 10.1002/cncr.11922.PubMedCrossRefGoogle Scholar
  9. 9.
    D. J. Burgess, A. S. Hussain, T. S. Ingallinera, and M. L. Chen. Assuring quality and performance of sustained and controlled release parenterals: AAPS workshop report co-sponsored by FDA and USP. Pharm. Res. 19:1761–1768 (2002). doi: 10.1023/A:1020730102176.PubMedCrossRefGoogle Scholar
  10. 10.
    D. Burgess, D. Crommelin, A. Hussain, and M. Chen. Assuring quality and performance of sustained and controlled release parenterals. Eur. J. Pharm. Sci. 21:679–690 (2004). doi: 10.1016/j.ejps.2004.03.001.PubMedCrossRefGoogle Scholar
  11. 11.
    C. Nastruzzi, E. Esposito, R. Cortesi, R. Gambari, and E. Menegatti. Kinetics of bromocriptine release from microspheres: comparative analysis between different in vitro models. J. Microencapsul. 11:565–574 (1993). doi: 10.3109/02652049409034995.CrossRefGoogle Scholar
  12. 12.
    B. Conti, I. Genta, P. Giunchedi, and T. Modena. Testing of “in vitro” dissolution behaviour of microparticulate drug delivery systems. Drug Dev. Ind. Pharm. 21:1223–1233 (1995). doi: 10.3109/03639049509026671.CrossRefGoogle Scholar
  13. 13.
    D. F. Bain, D. L. Munday, and A. Smith. Modulation of rifampicin release from spray-dried microspheres using combinations of poly-(d,l-lactide). J. Microencapsul. 16:369–385 (1999). doi: 10.1080/026520499289086.PubMedCrossRefGoogle Scholar
  14. 14.
    A. Aubert-Pouëssel, D. C. Bibby, M. C. Venier-Julienne, F. Hindré, and J. P. Benoit. A novel in vitro delivery system for assessing the biological integrity of protein upon release from PLGA microspheres. Pharm. Res. 19:1046–1051 (2002). doi: 10.1023/A:1016482809810.PubMedCrossRefGoogle Scholar
  15. 15.
    S. D’Souza, and P. P. DeLuca. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS PharmSciTech. 6:323–328 (2005). doi: 10.1208/pt060242.CrossRefGoogle Scholar
  16. 16.
    S. D’Souza, and P. P. DeLuca. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res. 23:460–474 (2006). doi: 10.1007/s11095-005-9397-8.PubMedCrossRefGoogle Scholar
  17. 17.
    J. Siepmann, and A. Goepferich. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev. 48:229–247 (2001). doi: 10.1016/S0169-409X(01)00116-8.PubMedCrossRefGoogle Scholar
  18. 18.
    A. Brunner, K. Maeder, and A. Goepferich. PH and osmotic pressure inside biodegradable microspheres during erosion. Pharm. Res. 16:847–853 (1999). doi: 10.1023/A:1018822002353.PubMedCrossRefGoogle Scholar
  19. 19.
    K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17:100–106 (2000). doi: 10.1023/A:1007582911958.PubMedCrossRefGoogle Scholar
  20. 20.
    L. Li, and S. P. Schwendeman. Mapping neutral microclimate pH in PLGA microspheres. J. Control. Release. 101:163–173 (2005). doi: 10.1016/j.jconrel.2004.07.029.PubMedCrossRefGoogle Scholar
  21. 21.
    F. v. Burkersroda, L. Schedl, and A. Goepferich. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 23:4221–4231 (2002). doi: 10.1016/S0142-9612(02)00170-9.CrossRefGoogle Scholar
  22. 22.
    S. P. Schwendeman. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 19:73–98 (2002). doi: 10.1615/CritRevTherDrugCarrierSyst.v19.i1.20.PubMedCrossRefGoogle Scholar
  23. 23.
    J. Siepmann, K. Elkharraz, F. Siepmann, and D. Klose. How autocatalysis accelerates drug release from PLGA-based microparticles: A quantitative treatment. Biomacromolecules. 6:2312–2319 (2005). doi: 10.1021/bm050228k.PubMedCrossRefGoogle Scholar
  24. 24.
    D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, and J. Siepmann. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int. J. Pharm. 314:198–206 (2006). doi: 10.1016/j.ijpharm.2005.07.031.PubMedCrossRefGoogle Scholar
  25. 25.
    J. Siepmann, F. Siepmann, and A. T. Florence. Local controlled drug delivery to the brain: Mathematical modeling of the underlying mass transport mechanisms. Int. J. Pharm. 314:101–119 (2006). doi: 10.1016/j.ijpharm.2005.07.027.PubMedCrossRefGoogle Scholar
  26. 26.
    S. Allababidi, and J. C. Shah. Kinetics and mechanism of release from glyceryl monostearate-based implants: evaluation of release in a gel simulating in vivo implantation. J. Pharm. Sci. 87:738–744 (1998). doi: 10.1021/js9703986.PubMedCrossRefGoogle Scholar
  27. 27.
    G. T. Gillies, T. D. Wilhelm, J. A. C. Humphrey, H. L. Fillmore, K. L. Holloway, and W. C. Broaddus. A spinal cord surrogate with nanoscale porosity for in vitro simulations of restorative neurosurgical techniques. Nanotechnology. 13:587–591 (2002). doi: 10.1088/0957-4484/13/5/308.CrossRefGoogle Scholar
  28. 28.
    D. L. Holligan, G. T. Gillies, and J. P. Dailey. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. Nanotechnology. 14:661–666 (2003). doi: 10.1088/0957-4484/14/6/318.CrossRefGoogle Scholar
  29. 29.
    Z. Chen, G. Gillies, W. Broaddus, S. Prabhu, H. Fillmore, R. Mitchell, F. Corwin, and P. Fatouros. A realistic brain tissue phantom for intraparenchymal infusion studies. J. Neurosurg. 101:314–322 (2004).PubMedGoogle Scholar
  30. 30.
    A. S. Hoffman. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54:3–12 (2002). doi: 10.1016/S0169-409X(01)00239-3.PubMedCrossRefGoogle Scholar
  31. 31.
    S. Arnott, A. Fulmer, W. E. Scott, I. C. Dea, R. Moorhouse, and D. A. Rees. The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 90:269–272 (1974). doi: 10.1016/0022-2836(74)90372-6.PubMedCrossRefGoogle Scholar
  32. 32.
    M. Maaloum, N. Pernodet, and B. Tinland. Agarose gel structure using atomic force microscopy: Gel concentration and ionic strength effects. Electrophoresis. 19:1606–1610 (1998). doi: 10.1002/elps.1150191015.PubMedCrossRefGoogle Scholar
  33. 33.
    A. Pluen, P. A. Netti, R. K. Jain, and D. A. Berk. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 77:542–552 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Crank. The mathematics of diffusion. Clarendon Press, Oxford, 1975.Google Scholar
  35. 35.
    H. Sjoeberg, S. Persson, and N. Caram-Lelham. How interactions between drugs and agarose-carrageenan hydrogels influence the simultaneous transport of drugs. J. Control. Release. 59:391–400 (1999). doi: 10.1016/S0168-3659(99)00013-9.CrossRefGoogle Scholar
  36. 36.
    G. Spenlehauer, M. Vert, J. P. Benoit, and A. Boddaert. In vitro and in vivo degradation of poly(D,L lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials. 10:557–563 (1989). doi: 10.1016/0142-9612(89)90063-X.PubMedCrossRefGoogle Scholar
  37. 37.
    P. Menei, V. Daniel, C. Montero-Menei, M. Brouillard, A. Pouplard- Barthelaix, and J. P. Benoit. Biodegradation and brain tissue reaction to poly(d,l-lactide-co-glycolide) microspheres. Biomaterials. 14:470–478 (1993). doi: 10.1016/0142-9612(93)90151-Q.PubMedCrossRefGoogle Scholar
  38. 38.
    M. A. Tracy, K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials. 20:1057–1062 (1999). doi: 10.1016/S0142-9612(99)00002-2.PubMedCrossRefGoogle Scholar
  39. 39.
    B. H. Woo, J. W. Kostanski, S. Gebrekidan, B. A. Dani, B. C. Thanoo, and P. P. DeLuca. Preparation, characterization and in vivo evaluation of 120-day poly(D,L-lactide) leuprolide microspheres. J. Control. Release. 75:307–315 (2001). doi: 10.1016/S0168-3659(01)004030-5.PubMedCrossRefGoogle Scholar
  40. 40.
    M. Sandor, J. Harris, and E. Mathiowitz. A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo. Biomaterials. 23:4413–4423 (2002). doi: 10.1016/S0142-9612(02)00183-7.PubMedCrossRefGoogle Scholar
  41. 41.
    L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, J. P. Vacanti, R. Langer, and A. G. Mikos. In vitro and in vivo degradation of porous poly(-lactic-co-glycolic acid) foams. Biomaterials. 21:1837–1845 (2000). doi: 10.1016/S0142-9612(00)00047-8.PubMedCrossRefGoogle Scholar
  42. 42.
    R. A. Kenley, M. O. Lee, T. R. Mahoney, and L. M. Sanders. Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro. Macromolecules. 20:2398–2403 (1987). doi: 10.1021/ma00176a012.CrossRefGoogle Scholar
  43. 43.
    M. Baro, E. Sanchez, A. Delgado, A. Perera, and C. Evora. In vitro-in vivo characterization of gentamicin bone implants. J. Control. Release. 83:353–364 (2002). doi: 10.1016/S0168-3659(02)00179-7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. Klose
    • 1
    • 2
  • N. Azaroual
    • 3
  • F. Siepmann
    • 1
  • G. Vermeersch
    • 3
  • J. Siepmann
    • 1
  1. 1.College of Pharmacy, JE 2491University of LilleLilleFrance
  2. 2.College of PharmacyFreie Universitaet BerlinBerlinGermany
  3. 3.College of Pharmacy, CNRS UMR 8009University of LilleLilleFrance

Personalised recommendations