Pharmaceutical Research

, Volume 26, Issue 1, pp 224–231 | Cite as

Synergistic Effect of Combination of Phenethyl Isothiocyanate and Sulforaphane or Curcumin and Sulforaphane in the Inhibition of Inflammation

  • Ka Lung Cheung
  • Tin Oo Khor
  • Ah-Ng Kong
Research Paper



Accumulating evidence from epidemiologic and clinical studies indicates that chronic inflammatory disorders harbor an increased risk of cancer development. Curcumin (CUR) has been strongly linked to the anti-inflammatory effect. On the other hand, isothiocyanates such as sulforaphane (SFN) and phenethyl isothiocyanate (PEITC) are strong phase-II detoxifying/antioxidant enzymes inducer. Therefore it is interesting to see if combination of these drugs can inhibit inflammation with higher combined efficacies.


We used nitric oxide (NO) assay to assess the synergism of the different combinations of CUR, SFN and PEITC. The inflammatory markers, e.g. iNOS, COX-2, prostaglandin E2 (PGE2), tumor necrosis factor (TNF) and interleukin-1 (IL-1) levels were determined using RT-PCR, Western blot and ELISA assays.


We report that combination of PEITC + SFN or CUR + SFN has a synergistic effect in down-regulating inflammation markers like TNF, IL-1, NO, PGE2. The synergism is probably due to the synergistic induction of phase II/antioxidant enzymes including heme-oxygenase1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1).


Our data suggest that CUR + SFN and PEITC + SFN combinations could be more effective than used alone in preventing inflammation and possibly its associated diseases including cancer.


combination inflammation LPS phase II genes 



We thank all the members in Dr. Tony Kong’s lab for their helpful discussion and preparation of this manuscript. This work was supported in part by National Institute of Health Grant R01 CA-073674–07.


  1. 1.
    L. M. Coussens, and Z. Werb. Inflammation and cancer. Nature. 420(6917):860–7 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    M. M. Muller. Inflammation in epithelial skin tumours: old stories and new ideas. Eur. J. Cancer. 42(6):735–44 (2006). doi: 10.1016/j.ejca.2006.01.014.CrossRefGoogle Scholar
  3. 3.
    B. J. Rollins. Inflammatory chemokines in cancer growth and progression. Eur. J. Cancer. 42(6):760–7 (2006). doi: 10.1016/j.ejca.2006.01.002.PubMedCrossRefGoogle Scholar
  4. 4.
    H. Lu, W. Ouyang, and C. Huang. Inflammation, a key event in cancer development. Mol. Cancer Res. 4(4):221–33 (2006). doi: 10.1158/1541–7786.MCR-05–0261.PubMedCrossRefGoogle Scholar
  5. 5.
    P. Szlosarek, K. A. Charles, and F. R. Balkwill. Tumour necrosis factor-alpha as a tumour promoter. Eur. J. Cancer. 42(6):745–50 (2006). doi: 10.1016/j.ejca.2006.01.012.PubMedCrossRefGoogle Scholar
  6. 6.
    Q. Li, S. Withoff, and I. M. Verma. Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends. Immunol. 26(6):318–25 (2005). doi: 10.1016/ Scholar
  7. 7.
    L. S. Angelo, and R. Kurzrock. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin. Cancer Res. 13(10):2825–30 (2007). doi: 10.1158/1078–0432.CCR-06–2416.PubMedCrossRefGoogle Scholar
  8. 8.
    P. Rose, Y. K. Won, C. N. Ong, and M. Whiteman. Beta-phenylethyl and 8-methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages. Nitric. Oxide. 12(4):237–43 (2005). doi: 10.1016/j.niox.2005.03.001.PubMedCrossRefGoogle Scholar
  9. 9.
    H. Gradisar, M. M. Keber, P. Pristovsek, and R. Jerala. MD-2 as the target of curcumin in the inhibition of response to LPS. J. Leukoc. Biol. 82(4):968–74 (2007). doi: 10.1189/jlb.1206727.PubMedCrossRefGoogle Scholar
  10. 10.
    I. Brouet, and H. Ohshima. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem. Biophys. Res. Commun. 206(2):533–40 (1995). doi: 10.1006/bbrc.1995.1076.PubMedCrossRefGoogle Scholar
  11. 11.
    M. M. Chan, H. I. Huang, M. R. Fenton, and D. Fong. In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem. Pharmacol. 55(12):1955–62 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Y. Kim, K. H. Kim, S. H. Lee, M. S. Yoon, H. J. Lee, D. O. Moon, C. M. Lee, S. C. Ahn, Y. C. Park, and Y. M. Park. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J. Immunol. 174(12):8116–8124 (2005).PubMedGoogle Scholar
  13. 13.
    L. Wu, M. H. Noyan Ashraf, M. Facci, R. Wang, P. G. Paterson, A. Ferrie, and B. H. Juurlink. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc. Natl. Acad. Sci. USA. 101(18):7094–9 (2004). doi: 10.1073/pnas.0402004101.PubMedCrossRefGoogle Scholar
  14. 14.
    P. Talalay, J. W. Fahey, Z. R. Healy, S. L. Wehage, A. L. Benedict, C. Min, and A. T. Dinkova-Kostova. Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc. Natl. Acad. Sci. USA. 104(44):17500–17505 (2007). doi: 10.1073/pnas.0708710104.PubMedCrossRefGoogle Scholar
  15. 15.
    T. C. Chou. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58(3):621–81 (2006). doi: 10.1124/pr.58.3.10.PubMedCrossRefGoogle Scholar
  16. 16.
    S. Nair, V. Hebbar, G. Shen, A. Gopalakrishnan, T. O. Khor, S. Yu, C. Xu, and A. N. Kong. Synergistic Effects of a Combination of Dietary Factors Sulforaphane and (−) Epigallocatechin-3-gallate in HT-29 AP-1 Human Colon Carcinoma Cells. Pharm. Res. 25(2):387–99 (2008). doi: 10.1007/s11095–007–9364–7.PubMedCrossRefGoogle Scholar
  17. 17.
    G. Shen, T. O. Khor, R. Hu, S. Yu, S. Nair, C. T. Ho, B. S. Reddy, M. T. Huang, H. L. Newmark, and A. N. Kong. Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/ + mouse. Cancer Res. 67(20):9937–44 (2007). doi: 10.1158/0008–5472.CAN-07–1112.PubMedCrossRefGoogle Scholar
  18. 18.
    G. Shen, C. Xu, R. Hu, M. R. Jain, A. Gopalkrishnan, S. Nair, M. T. Huang, J. Y. Chan, and A. N. Kong. Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Mol. Cancer Ther. 5(1):39–51 (2006). doi: 10.1158/1535–7163.MCT-05–0293.PubMedCrossRefGoogle Scholar
  19. 19.
    E. Balogun, M. Hoque, P. Gong, E. Killeen, C. J. Green, R. Foresti, J. Alam, and R. Motterlini. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371(Pt 3):887–895 (2003). doi: 10.1042/BJ20021619.PubMedCrossRefGoogle Scholar
  20. 20.
    C. Xu, G. Shen, C. Chen, C. Gélinas, and A. N. Kong. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene. 24(28):4486–95 (2005). doi: 10.1038/sj.onc.1208656.PubMedCrossRefGoogle Scholar
  21. 21.
    E. Lázár-Molnár, H. Hegyesi, S. Tóth, and A. Falus. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine. 12(6):547–54 (2000). doi: 10.1006/cyto.1999.0614.PubMedCrossRefGoogle Scholar
  22. 22.
    W. W. Lin, and M. Karin. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117(5):1175–83 (2007). doi: 10.1172/JCI31537.PubMedCrossRefGoogle Scholar
  23. 23.
    N. Li, J. Alam, M. I. Venkatesan, A. Eiguren-Fernandez, D. Schmitz, E. Di Stefano, N. Slaughter, E. Killeen, X. Wang, A. Huang, M. Wang, A. H. Miguel, A. Cho, C. Sioutas, and A. E. Nel. Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals. J. Immunol. 173(5):3467–81 (2004).PubMedGoogle Scholar
  24. 24.
    X. L. Chen, and C. Kunsch. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr. Pharm. Des. 10(8):879–91 (2004). doi: 10.2174/1381612043452901.PubMedCrossRefGoogle Scholar
  25. 25.
    C. C. Lin, X. M. Liu, K. Peyton, H. Wang, W. C. Yang, S. J. Lin, and W. Durante. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler. Thromb. Vasc. Biol. 28(4):739–45 (2008). doi: 10.1161/ATVBAHA.107.160085.PubMedCrossRefGoogle Scholar
  26. 26.
    W. W. Wang, D. L. Smith, and S. D. Zucker. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology. 40(2):424–33 (2004). doi: 10.1002/hep.20334.PubMedCrossRefGoogle Scholar
  27. 27.
    R. K. Thimmulappa, H. Lee, T. Rangasamy, S. P. Reddy, M. Yamamoto, T. W. Kensler, and S. Biswal. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116(4):984–95 (2006). doi: 10.1172/JCI25790.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayUSA
  2. 2.Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations