Pharmaceutical Research

, Volume 25, Issue 12, pp 2920–2923 | Cite as

The Silent (R)evolution of Polymeric Nucleic Acid Therapeutics

  • Ernst Wagner

The field of polymeric gene delivery systems (1, 2, 3) started 1962 and 1965 with the delivery of infectious poliovirus RNA into cultured cells using cationic proteins or diethylaminoethyl-dextran as carriers (4,5). It developed slowly but steadily in the shadow of more advanced technologies like therapeutic antibody and polymer conjugates (6). Compared with the latter technologies, polymeric nucleic-acid therapeutics have been more challenging and complex in every sense: both the carrier and the therapeutic payload are macromolecules, forming non-stochiometric complexes termed ‘polyplexes’ (7), initially complicating standardized pharmaceutical production processes. Milestones in the development of polyplexes include in 1988 the development of the first receptor-mediated polyplexes for hepatocytes targeting in vivo in rodents (8), the improved performance by incorporation of endosomolytic components, leading subsequently also to the first polymer-based ex vivogene therapy trial...


  1. 1.
    D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4:581–593 (2005). doi: 10.1038/nrd1775.PubMedCrossRefGoogle Scholar
  2. 2.
    T. G. Park, J. H. Jeong, and S. W. Kim. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev. 58:467–486 (2006). doi: 10.1016/j.addr.2006.03.007.PubMedCrossRefGoogle Scholar
  3. 3.
    D. Schaffert and E. Wagner. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. Jun 5. (2008) [Epub ahead of print].Google Scholar
  4. 4.
    A. Vaheri, and J. S. Pagano. Infectious poliovirus RNA: a sensitive method of assay. Virology. 27:434–436 (1965). doi: 10.1016/0042-6822(65)90126-1.PubMedCrossRefGoogle Scholar
  5. 5.
    C. E. Smull, and E. H. Ludwig. Enhancement of the plaque forming capacity of poliovirus ribonucleic acid with basic proteins. J. Bacteriol. 84:1035–1040 (1962) Medline.PubMedGoogle Scholar
  6. 6.
    R. Duncan. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2:347–360 (2003). doi: 10.1038/nrd1088.PubMedCrossRefGoogle Scholar
  7. 7.
    P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8:511–512 (1997). doi: 10.1089/hum.1997.8.5-511.PubMedCrossRefGoogle Scholar
  8. 8.
    G. Y. Wu, and C. H. Wu. Receptor-mediated gene delivery and expression in vivo. J Biol Chem. 262:14621–14624 (1988).Google Scholar
  9. 9.
    S. Schreiber, E. Kampgen, E. Wagner, et al. Immunotherapy of metastatic malignant melanoma by a vaccine consisting of autologous interleukin 2-transfected cancer cells: outcome of a phase I study. Hum. Gene Ther. 10:983–993 (1999). doi: 10.1089/10430349950018382.PubMedCrossRefGoogle Scholar
  10. 10.
    J. Haensler, and F. C. Szoka Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem. 4:372–379 (1993). doi: 10.1021/bc00023a012.PubMedCrossRefGoogle Scholar
  11. 11.
    O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995). doi: 10.1073/pnas.92.16.7297.PubMedCrossRefGoogle Scholar
  12. 12.
    C. Plank, K. Mechtler, F. C. Szoka Jr., and E. Wagner. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7:1437–1446 (1996). doi: 10.1089/hum.1996.7.12-1437.PubMedCrossRefGoogle Scholar
  13. 13.
    M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605 (1999). doi: 10.1038/ Scholar
  14. 14.
    K. D. Fisher, K. Ulbrich, V. Subr, C. M. Ward, V. Mautner, D. Blakey, and L. W. Seymour. A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther. 7:1337–1343 (2000). doi: 10.1038/ Scholar
  15. 15.
    P. B. Davis, and M. J. Cooper. Vectors for airway gene delivery. AAPS. J. 9:E11–E17 (2007). doi: 10.1208/aapsj0901002.PubMedCrossRefGoogle Scholar
  16. 16.
    R. D. Alvarez, M. N. Barnes, M. L. Anderson, S. Saddekni, S. Makhija, I. Maya, J. E. Kendrick, J. G. Fewell, D. H. Lewis, and K. Anwer. Progress in clinical development of a novel IL-12 gene therapeutic for the treatment of recurrent ovarian cancer. Molec Ther. 16:S63 (2008).Google Scholar
  17. 17.
    A. Maruyama, T. Ishihara, J. S. Kim, S. W. Kim, and T. Akaike. Nanoparticle Dna Carrier With Poly(L Lysine) Grafted Polysaccharide Copolymer and Poly(D,L Lactic Acid). Bioconjugate Chemistry. 8(5):735–742 (1997). doi: 10.1021/bc9701048.PubMedCrossRefGoogle Scholar
  18. 18.
    S. Han, R. I. Mahato, Y. K. Sung, and S. W. Kim. Development of biomaterials for gene therapy. Mol Ther. 2:302–317 (2000). doi: 10.1006/mthe.2000.0142.PubMedCrossRefGoogle Scholar
  19. 19.
    J. Wang, H. Q. Mao, and K. W. Leong. A novel biodegradable gene carrier based on polyphosphoester. J Am. Chem. Soc. 123:9480–9481 (2001). doi: 10.1021/ja016062m.PubMedCrossRefGoogle Scholar
  20. 20.
    D. G. Anderson, D. M. Lynn, and R. Langer. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed Engl. 42:3153–3158 (2003). doi: 10.1002/anie.200351244.PubMedCrossRefGoogle Scholar
  21. 21.
    G. T. Zugates, N. C. Tedford, A. Zumbuehl, S. Jhunjhunwala, C. S. Kang, L. G. Griffith, D. A. Lauffenburger, R. Langer, and D. G. Anderson. Gene delivery properties of end-modified poly(beta-amino ester)s. Bioconjug Chem. 18:1887–1896 (2007). doi: 10.1021/bc7002082.PubMedCrossRefGoogle Scholar
  22. 22.
    M. Meyer, and E. Wagner. Recent developments in the application of plasmid DNA-based vectors and small interfering RNA therapeutics for cancer. Hum. Gene Ther. 17:1062–1076 (2006). doi: 10.1089/hum.2006.17.1062.PubMedCrossRefGoogle Scholar
  23. 23.
    A. Aigner. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J. Biotechnol. 124:12–25 (2006). doi: 10.1016/j.jbiotec.2005.12.003.PubMedCrossRefGoogle Scholar
  24. 24.
    L. Aagaard, and J. J. Rossi. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv. Rev. 59:75–86 (2007). doi: 10.1016/j.addr.2007.03.005.PubMedCrossRefGoogle Scholar
  25. 25.
    M. Manoharan. RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol. 8:570–9 (2004). doi: 10.1016/j.cbpa.2004.10.007.PubMedCrossRefGoogle Scholar
  26. 26.
    D. B. Rozema, D. L. Lewis, D. H. Wakefield, S. C. Wong, J. J. Klein, P. L. Roesch, S. L. Bertin, T. W. Reppen, Q. Chu, A. V. Blokhin, J. E. Hagstrom, and J. A. Wolff. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci U. S. A. 104:12982–12987 (2007). doi: 10.1073/pnas.0703778104.PubMedCrossRefGoogle Scholar
  27. 27.
    M. M. Fabani, and M. J. Gait. miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA. 14:336–46 (2008). doi: 10.1261/rna.844108.PubMedCrossRefGoogle Scholar
  28. 28.
    H. Yin, Q. Lu, and M. Wood. Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther. 16:38–45 (2008). doi: 10.1038/ Scholar
  29. 29.
    H. Ulrich, C. A. Trujillo, A. A. Nery, J. M. Alves, P. Majumder, R. R. Resende, and A. H. Martins. DNA and RNA aptamers: from tools for basic research towards therapeutic applications. Comb. Chem High Throughput. Screen. 9:619–632 (2006). doi: 10.2174/138620706778249695.PubMedCrossRefGoogle Scholar
  30. 30.
    A. Shir, M. Ogris, E. Wagner, and A. Levitzki. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 3:e6 (2006). doi: 10.1371/journal.pmed.0030006.PubMedCrossRefGoogle Scholar
  31. 31.
    D. W. Bartlett, H. Su, I. J. Hildebrandt, W. A. Weber, and M. E. Davis. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci U. S. A. 104:15549–15554 (2007). doi: 10.1073/pnas.0707461104.PubMedCrossRefGoogle Scholar
  32. 32.
    D. W. Bartlett, and M. E. Davis. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng. 99:975–985 (2008). doi: 10.1002/bit.21668.PubMedCrossRefGoogle Scholar
  33. 33.
    C. Pomel, C. Leborgne, H. Cheradame, D. Scherman, A. Kichler, and P. Guegan. Synthesis and evaluation of amphiphilic poly(tetrahydrofuran-b-ethylene oxide) copolymers for DNA delivery into skeletal muscle. Pharm Res. (2008) this issue.Google Scholar
  34. 34.
    M.-E. Bonnet, P. Erbacher and A.-L. Bolcato-Bellemin. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm.Res. (2008) this issue.Google Scholar
  35. 35.
    V. Knorr, M. Ogris and E. Wagner. An acid sensitive ketal-based polyethylene glycol-oligoethylenimine copolymer mediates improved transfection efficiency at reduced toxicity. Pharm. Res. (2008) this issue.Google Scholar
  36. 36.
    K. Miyata, M. Oba, M. R. Kano, S. Fukushima, M. Han, H. Koyama, K. Miyazono, N. Nishiyama, K. Kataoka. polyplex micelles from triblock copolymers composed of tandemly aligned segments with biocompatible, endosomal escaping, and dna-condensing functions for systemic gene delivery to pancreatic tumor tissue. Pharm. Res. (2008) this issue.Google Scholar
  37. 37.
    U. Schillinger, G. Wexel C. Hacker, M. Kullmer, C. Koch, M. Gerg, S. Vogt, P. Ueblacker, T. Tischer, D. Hensler, J. Willisch, J. Aigner, A. Walch, A. Stemberger and C. Plank. A fibrin glue composition as carrier for nucleic acid vectors. Pharm. Res. (2008) this issue.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Pharmaceutical Biotechnology, Center for Drug ResearchLudwig-Maximilians-Universität (LMU) of MunichMunichGermany

Personalised recommendations