Pharmaceutical Research

, Volume 25, Issue 12, pp 2778–2785 | Cite as

Dynamic Dissolution Testing To Establish In Vitro/In Vivo Correlations for Montelukast Sodium, a Poorly Soluble Drug

  • Arthur Okumu
  • Marie DiMaso
  • Raimar Löbenberg
Research Paper



The objectives of the study was to develop a dissolution test method that can be used to predict the oral absorption of montelukast sodium, and to establish an in vitro/in vivo correlation (IVIVC) using computer simulations.


Drug solubility was measured in different media. The dissolution behaviour of montelukast sodium 10 mg film coated tablets was studied using the flow-through cell dissolution method following a dynamic pH change protocol, as well as in the USP Apparatus 2. Computer simulations were performed using GastroPlus™. Biorelevant dissolution media (BDM) prepared using bile salts and lecithin in buffers was used as the dissolution media, as well as the USP simulated intestinal fluid (SIF) pH 6.8 and blank FaSSIF pH 6.5. Dissolution tests in the USP Apparatus 2 were performed under a constant pH condition, while the pH range used in the flow through cells was pH 2.0 to 7.5. The in vitro data were used as input functions into GastroPlus™ to simulate the in vivo profiles of the drug.


The solubility of montelukast sodium was low at low pH, but increased as the pH was increased. There was no significant difference in solubility in the pH range of 5.0 to 7.5 in blank buffers, but the drug solubility was higher in biorelevant media compared with the corresponding blank buffers at the same pH. Using the flow through cells, the dissolution rate was fast in simulated gastric fluid containing 0.1% SLS. The dissolution rate slowed down when the medium was changed to FaSSIF pH 6.5 and increased when the medium was changed to FaSSIF medium at pH 7.5. In the USP Apparatus 2, better dissolution was observed in FaSSIF compared with the USP buffers and blank FaSSIF with similar pH values. Dissolution was incomplete with less than 10% of the drug dissolved in the USP-SIF, and was practically non existent in blank FaSSIF pH 6.5. The in vitro results of the dynamic dissolution test were able to predict the clinical data from a bioavailability study best.


Dynamic dissolution testing using the flow through cell seems to be a powerful tool to establish in vitro/in vivo correlations for poorly soluble drugs as input function into GastroPlus.


ACAT BCS dynamic dissolution IVIVC 



This work was supported by a collaborative research grant from NSERC and Merck Frosst Canada Inc. We would like to thank Simulations Plus for their support.


  1. 1.
    T. R. Jones, M. Labelle, M. Belley, E. Champion, L. Charette, J. Evans, A. W. Ford-Hutchinson, J. Y. Gauthier, A. Lord, P. Masson et al. Pharmacology of montelukast sodium (Singulair), a potent and selective leukotriene D4 receptor antagonist. Can. J. Physiol. Pharmacol. 73:191–201 (1995).PubMedGoogle Scholar
  2. 2.
    R. M. H. Thibert, S. D. Clas, D. R. Meisner, and E. B. Vadas. Characterization of the self-association properties of a leukotrieneD 4 receptor antagonist, MK-0476. Int. J. Pharm. 134:59–70 (1996), DOI  10.1016/0378-5173(96)04435-3.CrossRefGoogle Scholar
  3. 3.
    J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15:11–22 (1998) DOI  10.1023/A:1011984216775.PubMedCrossRefGoogle Scholar
  4. 4.
    FDA-CDER. Guidance for Industry, Dissolution Testing of Immediate release Solid Oral Dosage Forms, U.S. Department of Health and Human Services, Food and Drug Administration, 1997.Google Scholar
  5. 5.
    J. Emami. In vitroin vivo correlation: from theory to applications. J. Pharm. Pharm. Sci. 9:169–189 (2006).PubMedGoogle Scholar
  6. 6.
    V. P. Shah, and L. J. Lesko. Current challenges and future regulatory directions in in vitro dissolution. Drug Inform. J. 29:885–891 (1995).Google Scholar
  7. 7.
    J. B. Dressman, G. L. Amidon, and D. Fleisher. Absorption potential: estimating the fraction absorbed for orally administered compounds. J. Pharm. Sci. 74:588–589 (1985) DOI  10.1002/jps.2600740523.PubMedCrossRefGoogle Scholar
  8. 8.
    W. N. Charman, C. J. Porter, S. Mithani, and J. B. Dressman. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J. Pharm. Sci. 86:269–282 (1997) DOI  10.1021/js960085v.PubMedCrossRefGoogle Scholar
  9. 9.
    D. Horter, and J. B. Dressman. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev. 46:75–87 (2001) DOI  10.1016/S0169-409X(00)00130-7.PubMedCrossRefGoogle Scholar
  10. 10.
    L. X. Yu, E. Lipka, J. R. Crison, and G. L. Amidon. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv. Drug Deliv. Rev. 19:359–376 (1996) DOI  10.1016/0169-409X(96)00009-9.PubMedCrossRefGoogle Scholar
  11. 11.
    S. Willmann, W. Schmitt, J. Keldenich, J. Lippert, and J. B. Dressman. A physiological model for the estimation of the fraction dose absorbed in humans. J. Med. Chem. 47:4022–4031 (2004) DOI  10.1021/jm030999b.PubMedCrossRefGoogle Scholar
  12. 12.
    H. Cai, C. Stoner, A. Reddy, S. Freiwald, D. Smith, R. Winters, C. Stankovic, and N. Surendran. Evaluation of an integrated in vitro-in silico PBPK (physiologically based pharmacokinetic) model to provide estimates of human bioavailability. Int. J. Pharm. 308:133–139 (2006) DOI  10.1016/j.ijpharm.2005.11.002.PubMedCrossRefGoogle Scholar
  13. 13.
    H. Wei, and R. Lobenberg. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci. 29:45–52 (2006) DOI  10.1016/j.ejps.2006.05.004.PubMedCrossRefGoogle Scholar
  14. 14.
    B. Agoram, W. S. Woltosz, and M. B. Bolger. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev. 50(Suppl 1):S41–67 (2001) DOI  10.1016/S0169-409X(01)00179-X.PubMedCrossRefGoogle Scholar
  15. 15.
    SimulationsPlus. GastroPlus Manual. Lancaster, USA, 2006.Google Scholar
  16. 16.
    USP. United States Pharmacopeia 29/National Formulary 24. The USP, Rockville, MD, 2006.Google Scholar
  17. 17.
    S. A. Qureshi, G. Caillé, R. Brien, R. Piccirilli, V. Yu, and I. J. McGilveray. Application of flow-through dissolution method for the evaluation of oral formulations of nifedipine. Drug Dev. Ind. Pharm. 20:1869–1882 (1994), DOI  10.3109/03639049409050214.CrossRefGoogle Scholar
  18. 18.
    K. Thoma, and I. Ziegler. Development of an automated flow-through dissolution system for poorly soluble drugs with poor chemical stability in dissolution media. Pharmazie. 53:784–790 (1998).Google Scholar
  19. 19.
    M. Marques. Dissolution Media Simulating fasted and Fed States, Dissolution Technologies Vol. 16, 2004.Google Scholar
  20. 20.
    E. Galia, E. Nicolaides, D. Horter, R. Lobenberg, C. Reppas, and J. B. Dressman. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res. 15:698–705 (1998) DOI  10.1023/A:1011910801212.PubMedCrossRefGoogle Scholar
  21. 21.
    L. V. Allen, N. G. Popovich, and H. C. Ansel. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery systems. Lippincott Williams and Wilkins, Philadelphia, 2005.Google Scholar
  22. 22.
    R. Lobenberg, and G. L. Amidon. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 50:3–12 (2000) DOI  10.1016/S0939-6411(00)00091-6.PubMedCrossRefGoogle Scholar
  23. 23.
    S. S. Davis, J. G. Hardy, and J. W. Fara. Transit of pharmaceutical dosage forms through the small intestine. Gut. 27:886–892 (1986) DOI  10.1136/gut.27.8.886.PubMedCrossRefGoogle Scholar
  24. 24.
    J. Fallingborg, P. Pedersen, and B. A. Jacobsen. Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig. Dis. Sci. 43:702–705 (1998) DOI  10.1023/A:1018893409596.PubMedCrossRefGoogle Scholar
  25. 25.
    P. Mojaverian, K. Chan, A. Desai, and V. John. Gastrointestinal transit of a solid indigestible capsule as measured by radiotelemetry and dual gamma scintigraphy. Pharm. Res. 6:719–724 (1989) DOI  10.1023/A:1015998708560.PubMedCrossRefGoogle Scholar
  26. 26.
    J. Fallingborg. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 46:183–196 (1999).PubMedGoogle Scholar
  27. 27.
    H. Cheng, J. A. Leff, R. Amin, B. J. Gertz, M. De Smet, N. Noonan, J. D. Rogers, W. Malbecq, D. Meisner, and G. Somers. Pharmacokinetics, bioavailability, and safety of montelukast sodium (MK-0476) in healthy males and females. Pharm. Res. 13:445–448 (1996) DOI  10.1023/A:1016056912698.PubMedCrossRefGoogle Scholar
  28. 28.
    L. Shargel, and A. B. C. Yu. Applied Biopharmaceutics and Pharmacokinetics. McGraw-Hill, New York, 1999.Google Scholar
  29. 29.
    J. W. Moore, H. H, Flanner. Mathematical Comparison of Dissolution Profiles, Pharmaceutical Technology, Vol. 6, 1996, pp. 64–74.Google Scholar
  30. 30.
    FDA-CDER. Guidance for Industry Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations. In U.S. Department of Health and Human Services Food and Drug Administration (ed.), 1997.Google Scholar
  31. 31.
    J. Jinno, D. Oh, J. R. Crison, and G. L. Amidon. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant. J. Pharm. Sci. 89:268–274 (2000) DOI 10.1002/(SICI)1520-6017(200002)89:2<268::AID-JPS14>3.0.CO;2-F.PubMedCrossRefGoogle Scholar
  32. 32.
    S. D. Mithani, V. Bakatselou, C. N. TenHoor, and J. B. Dressman. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13:163–167 (1996) DOI  10.1023/A:1016062224568.PubMedCrossRefGoogle Scholar
  33. 33.
    J. R. Crison, N. D. Weiner, and G. L. Amidon. Dissolution media for in vitro testing of water-insoluble drugs: effect of surfactant purity and electrolyte on in vitro dissolution of carbamazepine in aqueous solutions of sodium lauryl sulfate. J. Pharm. Sci. 86:384–388 (1997) DOI  10.1021/js960105t.PubMedCrossRefGoogle Scholar
  34. 34.
    M. A. Hammad, and B. W. Muller. Increasing drug solubility by means of bile salt-phosphatidylcholine-based mixed micelles. Eur. J. Pharm. Biopharm. 46:361–367 (1998) DOI  10.1016/S0939-6411(98)00037-X.PubMedCrossRefGoogle Scholar
  35. 35.
    Y. Wu, D. O. Kildsig, and E. S. Ghaly. Effect of hydrodynamic environment on tablets dissolution rate. Pharm. Dev. Technol. 9:25–37 (2004) DOI  10.1081/PDT-120027415.PubMedCrossRefGoogle Scholar
  36. 36.
    C. Y. Perng, A. S. Kearney, N. R. Palepu, B. R. Smith, and L. M. Azzarano. Assessment of oral bioavailability enhancing approaches for SB-247083 using flow-through cell dissolution testing as one of the screens. Int. J. Pharm. 250:147–156 (2003) DOI  10.1016/S0378-5173(02)00521-5.PubMedCrossRefGoogle Scholar
  37. 37.
    V. H. Sunesen, B. L. Pedersen, H. G. Kristensen, and A. Mullertz. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur. J. Pharm. Sci. 24:305–313 (2005) DOI  10.1016/j.ejps.2004.11.007.PubMedCrossRefGoogle Scholar
  38. 38.
    J. J. Zhao, J. D. Rogers, S. D. Holland, P. Larson, R. D. Amin, R. Haesen, A. Freeman, M. Seiberling, M. Merz, and H. Cheng. Pharmacokinetics and bioavailability of montelukast sodium (MK-0476) in healthy young and elderly volunteers. Biopharm. Drug Dispos. 18:769–777 (1997) DOI 10.1002/(SICI)1099-081X(199712)18:9<769::AID-BDD60>3.0.CO;2-K.PubMedCrossRefGoogle Scholar
  39. 39.
    S. K. Balani, X. Xu, V. Pratha, M. A. Koss, R. D. Amin, C. Dufresne, R. R. Miller, B. H. Arison, G. A. Doss, M. Chiba, A. Freeman, S. D. Holland, J. I. Schwartz, K. C. Lasseter, B. J. Gertz, J. I. Isenberg, J. D. Rogers, J. H. Lin, and T. A. Baillie. Metabolic profiles of montelukast sodium (Singulair), a potent cysteinyl leukotriene1 receptor antagonist, in human plasma and bile. Drug Metab. Dispos. 25:1282–1287 (1997).PubMedGoogle Scholar
  40. 40.
    M. Chiba, X. Xu, J. A. Nishime, S. K. Balani, and J. H. Lin. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans. Drug Metab. Dispos. 25:1022–1031 (1997).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Merck Frosst Canada Inc.KirklandCanada

Personalised recommendations