Advertisement

Pharmaceutical Research

, 25:2327 | Cite as

Polyethylene Glycol 400 Enhances the Bioavailability of a BCS Class III Drug (Ranitidine) in Male Subjects but Not Females

  • Diane A. I. Ashiru
  • Rajesh Patel
  • Abdul W. Basit
Research Paper

Abstract

Purpose

The aim of this study was to investigate the effects of different doses of polyethylene glycol 400 (PEG 400) on the bioavailability of ranitidine in male and female subjects.

Method

Ranitidine (150 mg) was dissolved in 150 ml water with 0 (control), 0.5, 0.75, 1, 1.25 or 1.5 g PEG 400 and administered to 12 healthy human volunteers (six males and six females) in a randomized order. The cumulative amount of ranitidine and its metabolites excreted in urine over 24 h was determined for each treatment using a validated HPLC method.

Results

In the male volunteers, the mean cumulative amount of ranitidine excreted in the presence of 0, 0.5, 0.75, 1, 1.25 and 1.5 g PEG 400 were 35, 47, 57, 52, 50 and 37 mg respectively. These correspond to increases in bioavailability of 34%, 63%, 49%, 43% and 6% over the control treatment. In the female subjects, the mean cumulative quantity of ranitidine excretion in the absence and presence of increasing amounts of PEG 400 were 38, 29, 35, 33, 33 and 33 mg, corresponding to decreases in bioavailability of 24%, 8%, 13%, 13% and 13% compared to the control. The metabolite excretion profiles followed a similar trend to the parent drug at all concentrations of PEG 400.

Conclusions

All doses of PEG 400 enhanced the bioavailability of ranitidine in male subjects but not females, with the most pronounced effect in males noted with the 0.75 g dose of PEG 400 (63% increase in bioavailability compared to control, p < 0.05). These findings have significant implications for the use of PEG 400 in drug development and also highlight the importance of gender studies in pharmacokinetics.

KEY WORDS

excipients gastrointestinal transit gender H2 receptor antagonists oral absorption metabolism permeability solubility efflux transporters 

Notes

Acknowledgements

Diane A. I Ashiru gratefully acknowledges the Medical Research Council (MRC) and GlaxoSmithKline for the award of a studentship. In addition the authors thank Dr Erin Hugger at GlaxoSmithKline for her helpful discussions and comments. Dr Roger Jee at the School of Pharmacy, University of London is also acknowledged for his help with statistical analysis and interpretation.

References

  1. 1.
    A. W. Basit, J. M. Newton, M. D. Short, W. A. Waddington, P. J. Ell, and L. F. Lacey. The effect of polyethylene glycol 400 on gastrointestinal transit: Implications for the formulation of poorly-water soluble drugs. Pharm. Res. 18:1146–1150 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    A. W. Basit, F. Podczeck, J. M. Newton, W. A. Waddington, P. J. Ell, and L. F. Lacey. Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine. Pharm. Res. 19:1368–1374 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    J. D. R. Schulze, W. A. Waddington, P. J. Ell, G. E. Parsons, M. D. Coffin, and A. W. Basit. Concentration-dependent effects of polyethylene glycol 400 on gastrointestinal transit and drug absorption. Pharm. Res. 20:1984–1988 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    V. Chadwick, S. Phillips, and A. Hofmann. Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). I. Chemical analysis and biological properties of PEG 400. Gastroenterology. 73:241–246 (1977a).PubMedGoogle Scholar
  5. 5.
    J. D. R. Schulze, E. E. Peters, A. W. Vickers, J. S. Staton, M. D. Coffin, G. E. Parsons, and A. W. Basit. Excipient effects on gastrointestinal transit and drug absorption in beagle dogs. Int. J. Pharm. 300:67–75 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    J. D. Schulze, D. A. Ashiru, M. K. Khela, D. F. Evans, R. Patel, G. E. Parsons, M. D. Coffin, and A. W. Basit. Impact of formulation excipients on human intestinal transit. J. Pharm. Pharmacol. 58:821–815 (2006).PubMedCrossRefGoogle Scholar
  7. 7.
    G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification—the correlation of in-vitro drug product dissolution and in-vivo bioavailability. Pharm. Res. 12:413–420 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    M. L. Chen, A. B. Straughn, N. Sadrieh, M. Meyer, P. J. Faustino, A. B. Ciavarella, B. Meibohm, C. R. Yates, and A. S. Hussain. A modern view of excipient effects on bioequivalence: case study of sorbitol. Pharm. Res. 24:73–80 (2007).PubMedCrossRefGoogle Scholar
  9. 9.
    K. M. Koch, A. F. Parr, J. J. Tomlinson, E. P. Sandefer, G. A. Digenis, K. H. Donn, and J. R. Powell. Effect of sodium acid pyrophosphate on ranitidine bioavailability and gastrointestinal transit-time. Pharm. Res. 10:1027–1030 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    FDA. Department of Health and Human Services, Food and Drug Administration. 21 CFR parts 312 and 314. Docket No. 95N-0010, Investigational new drug applications and new drug applications. Fed. Regist. 60:46794–46797 (1998).Google Scholar
  11. 11.
    D. A. Ashiru, R. Patel, and A. W. Basit. Simple and universal HPLC-UV method to determine cimetidine, ranitidine, famotidine and nizatidine in urine: Application to the analysis of ranitidine and its metabolites in human volunteers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 860(2):235–240 (2007).PubMedCrossRefGoogle Scholar
  12. 12.
    N. P. Chau, P. Y. Zech, N. Pozet, and A. Hadj-Aissa. Ranitidine kinetics in normal subjects. Clin. Pharmacol. Ther. 31:770–774 (1982).PubMedGoogle Scholar
  13. 13.
    J. Flores Perez, H. J. Olguin, C. F. Perez, G. P. Guille, A. G. Perez, A. C. Vieyra, A. T. Lopez, M. C. Portugal, and I. L. Asseff. Effects of gender and phase of the menstrual cycle on the kinetics of ranitidine in healthy volunteers. Chronobio. Int. 20:485–494 (2003).Google Scholar
  14. 14.
    C. K. Shim, and J. S. Hong. Inter- and intrasubject variations of ranitidine pharmacokinetics after oral administration to normal male subjects. J. Pharm. Sci. 78:990–994 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    F. AbadSantos, A. J. Carcas, P. Guerra, C. Govantes, C. Montuenga, E. Gomez, A. Fernandez, and J. Frias. Evaluation of sex differences in the pharmacokinetics of ranitidine in humans. J. Clin. Pharmacol. 36:748–751 (1996).Google Scholar
  16. 16.
    D. L. Bourdet, and D. R. Thakker. Saturable absorptive transport of the hydrophilic organic cation ranitidine in caco-2 cells: Role of pH-Dependent organic cation uptake system and p-glycoprotein. Pharm. Res. 23:1165–1177 (2006).PubMedCrossRefGoogle Scholar
  17. 17.
    D. L. Bourdet, G. M. Pollack, and D. R. Thakker. Intestinal absorptive transport of the hydrophilic cation ranitidine: A kinetic modeling approach to elucidate the role of uptake and efflux transporters and paracellular vs. transcellular transport in caco-2 cells. Pharm. Res. 23:1178–1187 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    B. D. Rege, L. X. Yu, A. S. Hussain, and J. E. Polli. Effect of common excipients on caco-2 transport of low-permeability drugs. J. Pharm. Sci. 90:1776–1786 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    B. M. Johnson, W. N. Charman, and C. J. H. Porter. An in vitro examination of the impact of polyethylene glycol 400, pluronic P85, and vitamin E d-a-tocopheryl polyethylene glycol 1000 succinate on P-glycoprotein efflux and enterocyte-based metabolism in excised rat intestine. AAPS PharmSci. 4(Article 40):(2002).Google Scholar
  20. 20.
    Y. Urakami, M. Okuda, H. Saito, and K. Inui. Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett. 473:173–176 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    A. Collett, N. B. Higgs, E. Sims, M. Rowland, and G. Warhurst. Modulation of the permeability of H-2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J. Pharmacol. Exp. Ther. 288:171–178 (1999).PubMedGoogle Scholar
  22. 22.
    P. Pavek, G. Merino, E. Wagenaar, E. Bolscher, M. Novotna, J. W. Jonker, and A. H. Schinkel. Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J. Pharmacol. Exp. Ther. 312:144–152 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Yamagata, H. Kusuhara, M. Morishita, K. Takayama, H. Benameur, and Y. Sugiyama. Effect of excipients on breast cancer resistance protein substrate uptake activity. J. Control. Release. 124:1–5 (2007).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Yamagata, H. Kusuhara, M. Morishita, K. Takayama, H. Benameur, and Y. Sugiyama. Improvement of the oral drug absorption of topotecan through the inhibition of intestinal xenobiotic efflux transporter, breast cancer resistance protein, by excipients. Drug Metab. Dispos. 35:1142–1148 (2007).PubMedCrossRefGoogle Scholar
  25. 25.
    C. P. Zamber, J. K. Lamba, K. Yasuda, J. Farnum, K. Thummel, J. D. Schuetz, and E. G. Schuetz. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics. 13:19–28 (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    E. G. Schuetz, K. N. Furuya, and J. D. Schuetz. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J. Pharmacol. Exp. Ther. 275:1011–1018 (1995).PubMedGoogle Scholar
  27. 27.
    G. Merino, A. E. van Herwaarden, E. Wagenaar, J. W. Jonker, and A. H. Schinkel. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol. Pharmacol. 67:1765–1771 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    C. Alonso, M. Guilarte, M. Vicario, L. Ramos, Z. Ramadan, C. Martinez, E. Saperas, S. Kochhar, J. Santos, and J. R. Malagelada. Gender determines a differential epithelial response to stress in the healthy gut. Gastroenterology. 132:A334–A334 (2007).Google Scholar
  29. 29.
    C. J. Roberts. Clinical pharmacokinetics of ranitidine. Clin. Pharmacokinet. 9:211–221 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    J. H. Lin. Pharmacokinetic and pharmacodynamic properties of histamine H2-receptor antagonists. Relationship between intrinsic potency and effective plasma concentrations. Clin. Pharmacokinet. 20:218–236 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Gramatte, E. el Desoky, and U. Klotz. Site-dependent small intestinal absorption of ranitidine. Eur. J. Clin. Pharmacol. 46:253–259 (1994).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Martinez, C. Albet, J. A. Agundez, E. Herrero, J. A. Carrillo, M. Marquez, J. Benitez, and J. A. Ortiz. Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin. Pharmacol. Ther. 65:369–376 (1999).PubMedCrossRefGoogle Scholar
  33. 33.
    A. M. van Hecken, T. B. Tjandramaga, A. Mullie, R. Verbesselt, and P. J. de Schepper. Ranitidine: single dose pharmacokinetics and absolute bioavailability in man. Br. J. Clin. Pharmacol. 14:195–200 (1982).PubMedGoogle Scholar
  34. 34.
    P. F. Carey, L. E. Martin, and P. E. Owen. Determination of ranitidine and its metabolites in human urine by reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr. B. 225:161–168 (1981).CrossRefGoogle Scholar
  35. 35.
    R. Sadik, H. Abrahamsson, and P. O. Stotzer. Gender differences in gut transit shown with a newly developed radiological procedure. Scand. J. Gastroenterol. 38:36–42 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    J. Graff, K. Brinch, and J. L. Madsen. Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin. Physiol. 21:253–259 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    L. Degen, C. Petrig, D. Studer, S. Schroller, and C. Beglinger. Effect of tegaserod on gut transit in male and female subjects. Neurogastroenterol. Motil. 17:821–826 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    F. Gotch, J. Nadell, and I. S. Edelman. Gastrointestinal water and electrolytes. IV. The equilibration of deuterium oxide (D2O) in gastrointestinal contents and the proportion of total body water (T.B.W.) in the gastrointestinal tract. J. Clin. Invest. 36:289–296 (1957).PubMedCrossRefGoogle Scholar
  39. 39.
    M. L. Chen. Confounding factors for sex differences in pharmacokinetics and pharmacodynamics: Focus on dosing regimen, dosage form, and formulation. Clin. Pharmacol. Ther. 78:322–329 (2005).PubMedCrossRefGoogle Scholar
  40. 40.
    B. Meibohm, I. Beierle, and H. Derendorf. How important are gender differences in pharmacokinetics? Clin. Pharmacokinet. 41:329–342 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    J. B. Schwartz. The influence of sex on pharmacokinetics. Clin. Pharmacokinet. 42:107–121 (2003).PubMedCrossRefGoogle Scholar
  42. 42.
    F. Franconi, S. Brunelleschi, L. Steardo, and V. Cuomo. Gender differences in drug responses. Pharmacol. Res. 55:81–95 (2007).PubMedCrossRefGoogle Scholar
  43. 43.
    M. E. Krecic-Shepard, C. R. Barnas, J. Slimko, M. P. Jones, and J. B. Schwartz. Gender-specific effects on verapamil pharmacokinetics and pharmacodynamics in humans. J. Clin. Pharmacol. 40:219–230 (2000).PubMedCrossRefGoogle Scholar
  44. 44.
    A. B. Luzier, A. Killian, J. H. Wilton, M. F. Wilson, A. Forrest, and D. J. Kazierad. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin. Pharmacol. Ther. 66:594–601 (1999).PubMedGoogle Scholar
  45. 45.
    U. K. Walle, T. C. Fagan, M. J. Topmiller, E. C. Conradi, and T. Walle. The influence of gender and sex steroid hormones on the plasma binding of propranolol enantiomers. Br. J. Clin. Pharmacol. 37:21–25 (1994).PubMedGoogle Scholar
  46. 46.
    D. A. Gilmore, J. Gal, J. G. Gerber, and A. S. Nies. Age and gender influence the stereoselective pharmacokinetics of propranolol. J. Pharmacol. Exp. Ther. 261:1181–1186 (1992).PubMedGoogle Scholar
  47. 47.
    S. H. Preskorn. Clinically relevant pharmacology of selective serotonin reuptake inhibitors. An overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin. Pharmacokinet. 32(Suppl 1):1–21 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Diane A. I. Ashiru
    • 1
  • Rajesh Patel
    • 2
  • Abdul W. Basit
    • 1
  1. 1.Department of Pharmaceutics, The School of PharmacyUniversity of LondonLondonUnited Kingdom
  2. 2.GlaxoSmithKlineHarlowUnited Kingdom

Personalised recommendations