Pharmaceutical Research

, Volume 25, Issue 10, pp 2400–2412 | Cite as

Elastase-Sensitive Elastomeric Scaffolds with Variable Anisotropy for Soft Tissue Engineering

  • Jianjun Guan
  • Kazuro L. Fujimoto
  • William R. Wagner
Research Paper



To develop elastase-sensitive polyurethane scaffolds that would be applicable to the engineering of mechanically active soft tissues.


A polyurethane containing an elastase-sensitive peptide sequence was processed into scaffolds by thermally induced phase separation. Processing conditions were manipulated to alter scaffold properties and anisotropy. The scaffold’s mechanical properties, degradation, and cytocompatibility using muscle-derived stem cells were characterized. Scaffold in vivo degradation was evaluated by subcutaneous implantation.


When heat transfer was multidirectional, scaffolds had randomly oriented pores. Imposition of a heat transfer gradient resulted in oriented pores. Both scaffolds were flexible and relatively strong with mechanical properties dependent upon fabrication conditions such as solvent type, polymer concentration and quenching temperature. Oriented scaffolds exhibited anisotropic mechanical properties with greater tensile strength in the orientation direction. These scaffolds also supported muscle-derived stem cell growth more effectively than random scaffolds. The scaffolds expressed over 40% weight loss after 56 days in elastase containing buffer. Elastase-sensitive scaffolds were complete degraded after 8 weeks subcutaneous implantation in rats, markedly faster than similar polyurethanes that did not contain the peptide sequence.


The elastase-sensitive polyurethane scaffolds showed promise for application in soft tissue engineering where controlling scaffold mechanical properties and pore architecture are desirable.


anisotropy elastase polyurethanes scaffolds thermally induced phase separation 



This work was supported by the National Institutes of Health (grant no. HL069368). We are grateful to the laboratory of Dr. Johnny Huard at the University of Pittsburgh for their provision of mouse muscle derived stem cells.


  1. 1.
    L. E. Niklason, J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science. 284:489–493 (1999).PubMedCrossRefGoogle Scholar
  2. 2.
    S. P. Hoerstrup, G. Zund, R. Sodian, A. M. Schnell, J. Grunenfelder, and M. I. Turina. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 20:164–169 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Tiwari, H. J. Salacinski, G. Punshon, G. Hamilton, and A. M. Seifalian. Development of a hybrid cardiovascular graft using a tissue engineering approach. FASEB J. 16:791–796 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Opitz, K. Schenke-Layland, W. Richter, D. P. Martin, I. Degenkolbe, T. Wahlers, and U. A. Stock. Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Ann. Biomed. Eng. 32:212–222 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Guan, and W. R. Wagner. Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Biomacromolecules. 6:2833–2842 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Guan, K. L. Fujimoto, M. S. Sacks, and W. R. Wagner. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 26:3961–3971 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Guan, M. S. Sacks, E. J. Beckman, and W. R. Wagner. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials. 25:85–96 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Guan, M. S. Sacks, E. J. Beckman, and W. R. Wagner. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J. Biomed. Mater. Res. 61:493–503 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    J. D. Fromstein, and K. A. Woodhouse. Elastomeric biodegradable polyurethane blends for soft tissue application. J. Biomater. Sci. Polymer. Ed. 13:391–406 (2002).CrossRefGoogle Scholar
  10. 10.
    L. Tatai, T. G. Moore, R. Adhikari, F. Malherbe, R. Jayasekara, I. Griffiths, and P. A. Gunatillake. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials. 28:5407–5417 (2007).PubMedCrossRefGoogle Scholar
  11. 11.
    K. D. Kavlock, T. W. Pechar, J. O. Hollinger, S. A. Guelcher, and A. S. Goldstein. Synthesis and characterization of segmented poly(esterurethane urea) elastomers for bone tissue engineering. Acta Biomater. 3:475–484 (2007).PubMedCrossRefGoogle Scholar
  12. 12.
    Q. Z. Chen, A. Bismarck, U. Hansen, S. Junaid, M. Q. Tran, S. E. Harding, N. N. Ali, and A. R. Boccaccini. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials. 29:47–57 (2008).PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Wang, G. Ameer, B. Sheppard, and R. Langer. A tough biodegradable elastomer. Nat. Biotechnol. 20:602–606 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Yang, A. Webb, and G. A. Ameer. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16:511–516 (2004).CrossRefGoogle Scholar
  15. 15.
    R. Murugan, and S. Ramakrishna. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 13:1845–1866 (2007).PubMedCrossRefGoogle Scholar
  16. 16.
    Q. P. Pham, U. Sharma, and A. G. Mikos. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12:1197–1211 (2006).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Courtney, M. S. Sacks, J. J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials. 27:3631–3638 (2006).PubMedGoogle Scholar
  18. 18.
    K. Fujimoto, M. Minato, S. Miyamoto, T. Kaneko, H. Kikuchi, K. Sakai, M. Okada, and Y. Ikada. Porous polyurethane tubes as vascular graft. J. Appl. Biomater. 4:347–354 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    R. P. Kowligi, W. W. von Maltzahn, and R. C. Eberhart. Fabrication and characterization of small-diameter vascular prostheses. J. Biomed. Mater. Res. 22:245–256 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    K. Doi, Y. Nakayama, and T. Matsuda. Novel compliant and tissue permeable microporous polyurethane vascular prosthesis fabricated using an excimer laser ablation technique. J. Biomed. Mater. Res. 31:27–33 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Q. Liu, and M. Kodama. Porous polyurethane vascular prostheses with variable compliances. J. Biomed. Mater. Res. 26:1489–1494 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. S. Nam, and T. G. Park. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res. 47:8–17 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    R. Y. Zhang, and P. X. Ma. Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res. 44:446–455 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    P. X. Ma, and R. Y. Zhang. Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. 56:469–477 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    F. Yang, X. Qu, W. J. Cui, J. Z. Bei, F. Y. Yu, S. B. Lu, and S. G. Wang. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials. 27:4923–4933 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    A. S. Rowlands, S. A. Lim, D. Martin, and J. J. Cooper-White. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials. 28:2109–2121 (2007).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Guan, J. J. Stankus, and W. R. Wagner. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J. Control. Release. 120:70–78 (2007).PubMedCrossRefGoogle Scholar
  28. 28.
    J. Guan, J. J. Stankus, and W. R. Wagner. Development of composite porous scaffolds based on collagen and biodegradable poly(ester urethane)urea. Cell Transplant. 15:S17–S27 (2006).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Y. Hsu, J. D. Gresser, D. J. Trantolo, C. M. Lyons, P. R. Gangadharam, and D. L. Wise. Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J. Biomed. Mater. Res. 35:107–116 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    Z. Qu-Petersen, B. Deasy, R. Jankowski, M. Ikezawa, J. Cummins, R. Pruchnic, J. Mytinger, B. Cao, C. Gates, A. Wernig, and J. Huard. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J. Cell Biol. 157:851–864 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Oshima, T. R. Payne, K. L. Urish, T. Sakai, Y. Ling, B. Gharaibeh, K. Tobita, B. B. Keller, J. H. Cummins, and J. Huard. Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Molec. Ther. 12:1130–1141 (2005).CrossRefGoogle Scholar
  32. 32.
    R. V. Ulijn. Enzyme-responsive materials: a new class of smart biomaterials. J. Mater. Chem. 16:2217–2225 (2006).CrossRefGoogle Scholar
  33. 33.
    J. L. West, and J. A. Hubbell. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules. 32:241–244 (1999).CrossRefGoogle Scholar
  34. 34.
    B. K. Mann, A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials. 22:3045–3051 (2001).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Kim, E. H Chung, M. Gilbert, and K. E. Healy. Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J. Biomed. Mater. Res. A. 75:73–88 (2005).PubMedGoogle Scholar
  36. 36.
    S. G. Lévesque, and M. S. Shoichet. Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels. Bioconjug. Chem. 18:874–885 (2007).PubMedCrossRefGoogle Scholar
  37. 37.
    G. P. Raeber, M. P. Lutolf, and J. A. Hubbell. Mechanisms of 3-D migration and matrix remodeling of fibroblasts within artificial ECMs. Acta Biomater. 3:615–629 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    A. S. Gobin, and J. L. West. Cell migration through defined, synthetic extracellular matrix analogs. FASEB J. 16:751–753 (2002).PubMedGoogle Scholar
  39. 39.
    T. P. Kraehenbuehl, P. Zammaretti, A. J. Van der Vlies, R. G. Schoenmakers, M. P. Lutolf, M. E. Jaconi, and J. A. Hubbell. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG–hydrogel. Biomaterials. 29:2757–2766 (2008).PubMedCrossRefGoogle Scholar
  40. 40.
    C. J. Spaans, J. H. de Groot, F. G. Dekens, and A. J. Pennings. High molecular weight polyurethanes and a polyurethane urea based on 1,4-butanediisocyanate. Polym. Bull. 41:131–138 (1998).CrossRefGoogle Scholar
  41. 41.
    J. Boublik, H. Park, M. Radisic, E. Tognana, F. Chen, M. Pei, G. Vunjak-Novakovic, and L. E. Freed. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng. 11:1122–1132 (2005).PubMedCrossRefGoogle Scholar
  42. 42.
    K. L. Fujimoto, J. Guan, H. Oshima, T. Sakai, and W. R. Wagner. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann. Thorac. Surg. 83:648–654 (2007).PubMedCrossRefGoogle Scholar
  43. 43.
    K. L. Fujimoto, K. Tobita, W. D. Merryman, J. Guan, N. Momoi, D. B. Stolz, M. S. Sacks, B. B. Keller, and W. R. Wagner. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol. 49:2292–2300 (2007).PubMedCrossRefGoogle Scholar
  44. 44.
    G. A. Skarja, and K. A. Woodhouse. Synthesis and characterization of degradable polyurethane elastomers containing and amino acid-based chain extender. J. Biomater. Sci. Polym. Ed. 9:271–295 (1998).PubMedCrossRefGoogle Scholar
  45. 45.
    G. A. Skarja, and K.A. Woodhouse. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J. Biomater. Sci. Polym. Ed. 12:851–873 (2001).PubMedCrossRefGoogle Scholar
  46. 46.
    J. D. Fromstein, P. W. Zandstra, C. Alperin, D. Rockwood, J. F. Rabolt, and K.A. Woodhouse. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng. Part A. 14:369–378 (2008).PubMedCrossRefGoogle Scholar
  47. 47.
    D. L. Dinnes, J. P. Santerre, and R. S. Labow. Influence of biodegradable and non-biodegradable material surfaces on the differentiation of human monocyte-derived macrophages. Differentiation. 76:232–244 (2008).PubMedCrossRefGoogle Scholar
  48. 48.
    L. K. Carr, D. Steele, S. Steele, D. Wagner, R. Pruchnic, R. Jankowski, J. Erickson, J. Huard, and M. B. Chancellor. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int. Urogynecol. J. 19:881–883 (2008).CrossRefGoogle Scholar
  49. 49.
    T. R. Payne, H. Oshima, M. Okada, N. Momoi, K. Tobita, B. B. Keller, H. Peng, and J. Huard. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J. Am. Coll. Cardiol. 50:1685–1687 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jianjun Guan
    • 1
    • 4
  • Kazuro L. Fujimoto
    • 1
  • William R. Wagner
    • 1
    • 2
    • 3
  1. 1.McGowan Institute for Regenerative MedicinePittsburghUSA
  2. 2.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  3. 3.Department of Chemical EngineeringUniversity of PittsburghPittsburghUSA
  4. 4.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations