Pharmaceutical Research

, 25:2272 | Cite as

Diammine Dicarboxylic Acid Platinum Enhances Cytotoxicity in Platinum-Resistant Ovarian Cancer Cells through Induction of Apoptosis and S-Phase Cell Arrest

  • Hong Zheng
  • Wei Hu
  • Dongfang Yu
  • De-Yu Shen
  • Siqing Fu
  • John J. Kavanagh
  • I-Chien Wei
  • David J. Yang
Research Paper



Polysaccharides such as chondroitin play a potent role in tumor growth, tissue repair and angiogenesis. These properties make chondroitin a good candidate for novel drug delivery systems. Diammine dicarboxylic acid platinum (DDAP), a novel polymeric platinum compound, was developed by conjugating the platinum analogue to aspartate–chondroitin for drug delivery to tumor cells. DDAP improves platinum solubility which may reduce systemic toxicity and be more efficacious than cisplatin in killing tumor cells.


We tested and compared the cytotoxic effects of DDAP and CDDP on the platinum-sensitive 2008 and A2780 ovarian cancer cell lines and their platinum-resistant sublines 2008.C13 and A2780cis; we also investigated DDAP’s mechanism of action.


In the platinum-sensitive cell lines, the cytotoxic effects of DDAP and CDDP were comparable. However, in the platinum-resistant sublines, significantly greater cell-growth inhibition was induced by DDAP than by CDDP, especially at lower doses. DDAP also induced more apoptosis than CDDP did in the 2008.C13 subline, which was partially mediated by the caspase 3-dependent pathway. In addition, lower (but not higher) doses of DDAP arrested 90% of S-phase 2008.C13 cells, which might be associated with up-regulation of p21 and maintenance of low cyclin A expression. Furthermore, greater cellular uptake of DDAP was seen in platinum-resistant than in platinum-sensitive ovarian cancer cells.


Low-dose DDAP enhances drug delivery to platinum-resistant ovarian cancer cells and substantially inhibits their growth by inducting apoptosis and arresting cells in the S-phase, suggesting that DDAP may overcome platinum resistance in ovarian cancer.


CDDP CDDP analogue drug resistance ovarian cancer 



We thank Tamara Locke in the Department of Scientific Publications at M. D. Anderson Cancer Center for editing this manuscript, as well as Ling Chen and Richard Mendez for their assistance with the experiments. This work was supported by M. D. Anderson’s institutional grant and Core Grant (NCI grant 5P30CA016672-32).


  1. 1.
    A. Jemal, L. X. Clegg, E. Ward, L. A. Ries, X. Wu, P. M. Jamison, P. A. Wingo, H. L. Howe, R. N. Anderson, and B. K. Edwards. Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer. 101:3–27 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    J. J. Kavanagh, S. Pecoreli, A. Dipertrillo, and N. Einhorn. Chemotherapy in advanced ovarian cancer. Blackwell Scientific, Cambrige, MA, 1998.Google Scholar
  3. 3.
    W. P. McGuire, W. J. Hoskins, M. F. Brady, P. R. Kucera, E. E. Partridge, K. Y. Look, D. L. Clarke-Pearson, and M. Davidson. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer [see comments]. N Engl J Med. 334:1–6 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    M. J. Piccart, H. Lamb, and J. B. Vermorken. Current and future potential roles of the platinum drugs in the treatment of ovarian cancer. Ann Oncol. 12:1195–1203 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    J. T. Thigpen. Chemotherapy for advanced ovarian cancer: overview of randomized trials. Semin Oncol. 27:11–16 (2000).PubMedGoogle Scholar
  6. 6.
    G. Giaccone. Clinical perspectives on platinum resistance. Drugs. 59(Suppl 4):9–17 (2000)discussion 37–18.PubMedCrossRefGoogle Scholar
  7. 7.
    S. Manic, L. Gatti, N. Carenini, G. Fumagalli, F. Zunino, and P. Perego. Mechanisms controlling sensitivity to platinum complexes: role of p53 and DNA mismatch repair. Curr Cancer Drug Targets. 3:21–29 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Balch, T. H. Huang, R. Brown, and K. P. Nephew. The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol. 191:1552–1572 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    W. P. McGuire, and R. F. Ozols. Chemotherapy of advanced ovarian cancer. Semin Oncol. 25:340–348 (1998).PubMedGoogle Scholar
  10. 10.
    W. P. McGuire 3rd, and M. Markman. Primary ovarian cancer chemotherapy: current standards of care. Br J Cancer. 89(Suppl 3):S3–8 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    M. A. Fuertes, J. Castilla, C. Alonso, and J. M. Perez. Novel concepts in the development of platinum antitumor drugs. Curr Med Chem Anti-Canc Agents. 2:539–551 (2002).CrossRefGoogle Scholar
  12. 12.
    N. J. Moreland, M. Illand, Y. T. Kim, J. Paul, and R. Brown. Modulation of drug resistance mediated by loss of mismatch repair by the DNA polymerase inhibitor aphidicolin. Cancer Res. 59:2102–2106 (1999).PubMedGoogle Scholar
  13. 13.
    Z. H. Siddik. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 22:7265–7279 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    F. M. Muggia, and G. Los. Platinum resistance: laboratory findings and clinical implications. Stem Cells. 11:182–193 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    A. de Graeff, R. J. Slebos, and S. Rodenhuis. Resistance to cisplatin and analogues: mechanisms and potential clinical implications. Cancer Chemother Pharmacol. 22:325–332 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    M. J. McKeage. New-generation platinum drugs in the treatment of cisplatin-resistant cancers. Expert Opin Investig Drugs. 14:1033–1046 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Biagini, A. Pugnaloni, A. Damadei, A. Bertani, A. Belligolli, V. Bicchiega, and R. Muzzarelli. Morphological study of the capsular organization around tissue expanders coated with N-carboxybutyl chitosan. Biomaterials. 12:287–291 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    J. S. Pieper, P. B. van Wachem, M. J. A. van Luyn, L. A. Brouwer, T. Hafmans, J. H. Veerkamp, and T. H. van Kuppevelt. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats. Biomaterials. 21:1689–1699 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Prabaharan, and J. F. Mano. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 12:41–57 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Polykratis, P. Katsoris, J. Courty, and E. Papadimitriou. Characterization of heparin affin regulatory peptide signaling in human endothelial cells. J Biol Chem. 280:22454–22461 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    M. K. Chourasia, and S. K. Jain. Polysaccharides for colon targeted drug delivery. Drug Deliv. 11:129–148 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    V. R. Sinha, and R. Kumria. Polysaccharides in colon-specific drug delivery. Int J Pharm. 224:19–38 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    C. Haase, R. Bergmann, F. Fuechtner, A. Hoepping, and J. Pietzsch. l-type amino acid transporters LAT1 and LAT4 in cancer: uptake of 3-O-methyl-6-18F-fluoro-l-dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo. J Nucl Med. 48:2063–2071 (2007).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Li, J. E. Price, L. Milas, N. R. Hunter, S. Ke, D. F. Yu, C. Charnsangavej, and S. Wallace. Antitumor activity of poly(l-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res. 5:891–897 (1999).PubMedGoogle Scholar
  25. 25.
    Y. Sedletska, M. J. Giraud-Panis, and J. M. Malinge. Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr Med Chem Anticancer Agents. 5:251–265 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Fulda, M. Los, C. Friesen, and K.M. Debatin. Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int J Cancer. 76:105–114 (1998).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Kojima, K. Endo, H. Moriyama, Y. Tanaka, E. S. Alnemri, C. A. Slapak, B. Teicher, D. Kufe, and R. Datta. Abrogation of mitochondrial cytochrome c release and caspase-3 activation in acquired multidrug resistance. J Biol Chem. 273:16647–16650 (1998).PubMedCrossRefGoogle Scholar
  28. 28.
    K. M. Henkels, and J. J. Turchi. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res. 59:3077–3083 (1999).PubMedGoogle Scholar
  29. 29.
    G. D. Diaz, Q. Li, and R. H. Dashwood. Caspase-8 and apoptosis-inducing factor mediate a cytochrome c-independent pathway of apoptosis in human colon cancer cells induced by the dietary phytochemical chlorophyllin. Cancer Res. 63:1254–1261 (2003).PubMedGoogle Scholar
  30. 30.
    B. S. Cummings, G. R. Kinsey, L. J. Bolchoz, and R. G. Schnellmann. Identification of caspase-independent apoptosis in epithelial and cancer cells. J Pharmacol Exp Ther. 310:126–134 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    R. E. Aird, J. Cummings, A. A. Ritchie, M. Muir, R. E. Morris, H. Chen, P. J. Sadler, and D. I. Jodrell. In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer. Br J Cancer. 86:1652–1657 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    V. V. Ogryzko, P. Wong, and B. H. Howard. WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Mol Cell Biol. 17:4877–4882 (1997).PubMedGoogle Scholar
  33. 33.
    V. Gottifredi, K. McKinney, M. V. Poyurovsky, and C. Prives. Decreased p21 levels are required for efficient restart of DNA synthesis after S phase block. J Biol Chem. 279:5802–5810 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    A. L. Gartel, and A. L. Tyner. Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res. 246:280–289 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Gilfillan, E. L. Ho, M. Cella, W. M. Yokoyama, and M. Colonna. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol. 3:1150–1155 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hong Zheng
    • 1
    • 4
  • Wei Hu
    • 1
  • Dongfang Yu
    • 2
  • De-Yu Shen
    • 1
  • Siqing Fu
    • 3
  • John J. Kavanagh
    • 1
  • I-Chien Wei
    • 2
  • David J. Yang
    • 2
  1. 1.Department of Gynecologic Oncology, Unit 1362The University of Texas M. D. Anderson Cancer CenterHoustonUSA
  2. 2.Department of Experimental Diagnostic Imaging, Unit 59The University of Texas M. D. Anderson Cancer CenterHoustonUSA
  3. 3.Department of Gynecologic Medical OncologyThe University of Texas M. D. Anderson Cancer CenterHoustonUSA
  4. 4.Department of GynecologyBeijing Cancer HospitalBeijingChina

Personalised recommendations