Advertisement

Pharmaceutical Research

, Volume 25, Issue 8, pp 1925–1935 | Cite as

In Vitro and In Vivo Investigation on PLA–TPGS Nanoparticles for Controlled and Sustained Small Molecule Chemotherapy

  • Zhiping Zhang
  • Sie Huey Lee
  • Chee Wee Gan
  • Si-Shen Feng
Research Paper

Abstract

Purpose

The aim of this work was to evaluate in vivo poly(lactide)-d-α-tocopheryl polyethylene glycol 1,000 succinate nanoparticles (PLA–TPGS NPs) for controlled and sustained small molecule drug chemotherapy.

Methods

The drug-loaded PLA–TPGS NPs were prepared by the dialysis method. Particle size, surface morphology and surface chemistry, in vitro drug release and cellular uptake of NPs were characterized. In vitro and in vivo therapeutic effects of the nanoparticle formulation were evaluated in comparison with Taxol®.

Results

The PLA–TPGS NP formulation exhibited significant advantages in in vivo pharmacokinetics and xenograft tumor model versus the PLGA NP formulation and the pristine drug. Compared with Taxol®, the PLA–TPGS NP formulation achieved 27.4-fold longer half-life in circulation, 1.6-fold larger area-under-the-curve (AUC) with no portion located above the maximum tolerance concentration level. For the first time in the literature, one shot for 240 h chemotherapy was achieved in comparison with only 22 h chemotherapy for Taxol® at the same 10 mg/kg paclitaxel dose. Xenograft tumor model further confirmed the advantages of the NP formulation versus Taxol®.

Conclusions

The PLA–TPGS NP formulation can realize a way of controlled and sustained drug release for more than 10 days, which relieves one of the two major concerns on cancer nanotechnology, i.e. feasibility.

KEY WORDS

chemotherapeutic engineering controlled release nanomedicine nanopharmaceutical engineering paclitaxel 

Notes

Acknowledgments

The authors are grateful of Mr. Min Sung Chong, FYP students in Department of Chemical and Biomolecular Engineering, National University of Singapore, for their assistance in experiments and Dr. Linyun Zhao for the HPLC analysis method on plasma samples. This research was supported by A*STAR BMRC Singapore Cancer Syndicate Grant UU0028 (SS Feng, PI) and NUS FRC Grant R279-000-226-112 (SS Feng, PI). Zhang ZP thanks NUS for the financial support for his Ph.D. study and Lee SH thanks EDB and NUSNNI for the financial support for her M.Eng. study.

References

  1. 1.
    R. C. Donehower, E. K. Rowinsky, L. B. Grochow, and S. M. Longnecker. Phase I trial of Taxol in patients with advanced cancer. Cancer Treat. Rep. 71:1171–1177 (1987).PubMedGoogle Scholar
  2. 2.
    N. M. Lopes, E. G. Adams, T. W. Pitts, and B. K. Bhuyan. Cell kill kinetics and cell-cycle effects of taxol on human and hamster ovarian cell lines. Cancer Chemother. Pharmacol. 32:235–242 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    M. C. Wani, H. L. Taylor, and M. E. Wall. Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93:2325–2327 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    R. T. Dorr. Pharmacology and toxicology of Cremophor EL diluent. Ann. Pharmacother. 28:S11–S14 (1994).PubMedGoogle Scholar
  5. 5.
    M. Kongshaug, L. S. Cheng, J. Moan, and C. Rimington. Interaction of Cremophor EL with human plasma. Int. J. Biochem. 23:473–478 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    R. B. Weiss, R. C. Donehower, P. H. Wiernik, T. Ohnuma, R. J. Gralla, D. L. Trump, J. R. Baker, D. A. Van Echo, D. D. Von Hoff, and B. Leyland Jones. Hypersensitivity reactions from taxol. J. Clin. Oncol. 8:1263–1268 (1990).PubMedGoogle Scholar
  7. 7.
    S. S. Feng, and S. Chien. Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 58:4087–4114 (2003).CrossRefGoogle Scholar
  8. 8.
    S. S. Feng. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev. Med. Devices. 1:115–125 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17:100–106 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    S. B. Zhou, X. Y. Liao, X. H. Li, X. M. Deng, and H. Li. Poly-d,l-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems. J. Control. Release. 86:195–205 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    W. J. Krasavage, and C. J. Terhaar. d-alpha-tocopheryl poly(ethylene glycol) 1000 succinate—acute toxicity, subchronic feeding, reproduction, and teratologic studies in rat. J. Agric. Food Chem. 25:273–278 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Bogman, F. Erne-Brand, J. Alsenz, and J. Drewe. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J. Pharm. Sci. 92:1250–1261 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Chang, L. Z. Benet, and M. F. Hebert. The effect of water-soluble Vitamin-E (TPGS) on oral cyclosporine pharmacokinetics in healthy-volunteers. Clin. Pharmacol. Ther. 57:297–303 (1995).Google Scholar
  14. 14.
    Y. V. R. Prasad, S. P. Puthli, S. Eaimtrakarn, M. Ishida, Y. Yoshikawa, N. Shibata, and K. Takada. Enhanced intestinal absorption of vancomycin with Labrasol and d-a-tocopheryl PEG 1000 succinate in rats. Int. J. Pharm. 250:181–190 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Yu, A. Bridgers, J. Polli, A. Vickers, S. Long, A. Roy, R. Winnike, and M. Coffin. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm. Res. 16:1812–1817 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    J. M. Dintaman, and J. A. Silverman. Inhibition of P-glycoprotein by d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm. Res. 16:1550–1556 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    J. R. Fischer, K. R. Harkin, and L. C. Freeman. Concurrent administration of water-soluble vitamin E can increase the oral bioavailability of cyclosporine A in healthy dogs. Vet. Ther. 3:465–473 (2002).PubMedGoogle Scholar
  18. 18.
    L. Mu, and S. S. Feng. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (TaxolÒ). J. Control. Release. 80:129–144 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    L. Mu, and S. S. Feng. A novel controlled release formulation for the anticancer drug paclitaxel (TaxolÒ): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release. 86:33–48 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    K. Y. Win, and S. S. Feng. Effects of particles size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 26:2713–2722 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    K. Y. Win, and S. S. Feng. In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D, L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials. 27:2285–2291 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    Z. Zhang, and S. S. Feng. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: Synthesis, formulation, characterization and in vitro drug release. Biomaterials. 27:262–270 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    Z. Zhang, and S. S. Feng. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 27:4025–4033 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    Z. Zhang, and S. S. Feng. Self-assembled nanoparticles of poly(lactide)-Vitamin E TPGS copolymers for oral chemotherapy. Int. J. Pharm. 324:191–198 (2006).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Ryu, Y. I. Jeong, I. S. Kim, J. H. Lee, J. W. Nah, and S. H. Kim. Clonazepam release from core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) triblock copolymers. Int. J. Pharm. 200:231–242 (2002).CrossRefGoogle Scholar
  26. 26.
    L. W. Seymour. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit. Rev. Ther. Drug Carrier Syst. 9:135–187 (1992).PubMedGoogle Scholar
  27. 27.
    H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 65:271–284 (2000).PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Dong, and S. S. Feng. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 25:2843–2849 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Govender, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release. 57:171–185 (1999).PubMedCrossRefGoogle Scholar
  30. 30.
    W. J. Lin, L. W. Juang, and C. C. Lin. Stability and release performance of a series of pegylated copolymeric micelles. Pharm. Res. 20:668–73 (2003).PubMedCrossRefGoogle Scholar
  31. 31.
    J. E. Liebmann, J. A. Cook, C. Lipschultz, D. Teague, J. Fisher, and J. B. Mitchell. Cytotoxic studies of paclitaxel (Taxol) in human tumor cell lines. Br. J. Cancer. 68:1104–1109 (1993).PubMedGoogle Scholar
  32. 32.
    E. S. Lee, K. Na, and Y. H. Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release. 103:405–418 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    Z. Xu, W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, Z. Yan, and Y. Li. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int. J. Pharm. 288:361–368 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    Y. Chen, G. Dalwadi, and H. A. E. Benson. Drug delivery across the blood–brain barrier. Curr. Drug Deliv. 1:361–76 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Moreno, L. A. Lopez, A. Fabra, and C. Arus. 1H MRS markers of tumor growth in intrasplenic tumors and liver metastasis induced by injection of HT-29 cells in nude mice spleen. NMR Biomed. 11:93–106 (1998).PubMedCrossRefGoogle Scholar
  36. 36.
    M. G. Sacco, S. Soldati, E. Mira Cato, L. Cattaneo, G. Pratesi, E. Scanziani, and P. Vezzoni. Combined effects on tumor growth and metastasis by anti-estrogenic and antiangiogenic therapies in MMTV-neu mice. Gene Ther. 9:1338–1341 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhiping Zhang
    • 1
    • 4
  • Sie Huey Lee
    • 2
    • 5
  • Chee Wee Gan
    • 1
  • Si-Shen Feng
    • 1
    • 2
    • 3
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeKent RidgeSingapore
  2. 2.NUS Nanoscience and Nanotechnology Initiative (NUSNNI)National University of SingaporeSingaporeSingapore
  3. 3.Division of BioengineeringNational University of SingaporeKent RidgeSingapore
  4. 4.Harvard University Medical SchoolDana-Farber Cancer InstituteBostonUSA
  5. 5.Institute of Chemical and Engineering Sciences, A*STARSingaporeSingapore

Personalised recommendations