Pharmaceutical Research

, Volume 25, Issue 8, pp 1881–1890 | Cite as

Fragmentation of a Recombinant Monoclonal Antibody at Various pH

  • Georgeen Gaza-Bulseco
  • Hongcheng Liu
Research Paper



To determine the relative importance of direct hydrolysis and β-elimination, two common mechanisms of antibody hinge region fragmentation, and the impact of the conserved N-linked oligosaccharides in affecting antibody fragmentation under various pH.


A recombinant monoclonal antibody was incubated in buffers of various pH at 40°C for 5 weeks. The level of fragmentation was measured using size-exclusion-chromatography (SEC). The specific sites of fragmentation were determined by analyzing SEC fractions using liquid chromatography mass spectrometry (LC-MS).


Direct hydrolysis was accelerated by acidic and basic pH, while β-elimination contributed to hinge region fragmentation at pH 7 and above. In addition, a shift of the major peptide bond hydrolysis sites in the hinge region towards the C-terminal direction with the decrease of sample pH from 9 to 5 was observed. At pH 4, the major cleavage site shifted outside the hinge region and was localized in the CH2 domain. Oligosaccharides did not affect hinge region fragmentation in the pH range of 5–9, however, at pH 4 oligosaccharides slowed down fragmentation in the CH2 domain.


Antibody fragmentation level, sites and mechanisms were affected by pH. Oligosaccharides only affected the rate of fragmentation at pH 4.


fragmentation hinge region mass spectrometry recombinant monoclonal antibody 


  1. 1.
    A. J. Gearing, S. J. Thorpe, K. Miller, M. Mangan, P. G. Varley, T. Dudgeon, G. Ward, C. Turner, and R. Thorpe. Selective cleavage of human IgG by the matrix metalloproteinases, matrilysin and stromelysin. Immunol. Lett. 81:41–48 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    G. E. Connell, and R. H. Painter. Fragmentation of immunoglobulin during storage. Can. J. Biochem. 44:371–379 (1966).PubMedCrossRefGoogle Scholar
  3. 3.
    Y. Kong, Y. B. Chung, S. Y. Cho, and S. Y. Kang. Cleavage of immunoglobulin G by excretory-secretory cathepsin S-like protease of Spirometra mansoni plerocercoid. Parasitology. 109:611–621 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. Smith, A. J. Dowd, M. Heffernan, C. D. Robertson, and J. P. Dalton. Fasciola hepatica: a secreted cathepsin L-like proteinase cleaves host immunoglobulin. Int. J. Parasitol. 23:977–983 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Berasain, C. Carmona, B. Frangione, J. P. Dalton, and F. Goni. Fasciola hepatica: parasite-secreted proteinases degrade all human IgG subclasses: determination of the specific cleavage sites and identification of the immunoglobulin fragments produced. Exp. Parasitol. 94:99–110 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    H. S. Gadgil, P. V. Bondarenko, G. D. Pipes, T. M. Dillon, D. Banks, J. Abel, G. R. Kleemann, and M. J. Treuheit. Identification of cysteinylation of a free cysteine in the Fab region of a recombinant monoclonal IgG1 antibody using Lys-C limited proteolysis coupled with LC/MS analysis. Anal. Biochem. 355:165–174 (2006).PubMedCrossRefGoogle Scholar
  7. 7.
    A. J. Cordoba, B. J. Shyong, D. Breen, and R. J. Harris. Non-enzymatic hinge region fragmentation of antibodies in solution. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 818:115–121 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    P. E. Rao and D. J. Kroon. Orthoclone OKT3. Chemical mechanisms and functional effects of degradation of a therapeutic monoclonal antibody. In Y. J. Wang and R. Pearlman (eds.), Stability and characterization of Protein and Peptide Drugs: Case Histories, Plenum Press, New York, 1993, pp. 135–158.Google Scholar
  9. 9.
    W. Jiskoot, E. C. Beuvery, A. A. de Koning, J. N. Herron, and D. J. Crommelin. Analytical approaches to the study of monoclonal antibody stability. Pharm. Res. 7:1234–1241 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Paborji, N. L. Pochopin, W. P. Coppola, and J. B. Bogardus. Chemical and physical stability of chimeric L6, a mouse–human monoclonal antibody. Pharm. Res. 11:764–771 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    A. J. Alexander, and D. E. Hughes. Monitoring of IgG antibody thermal stability by micellar electrokinetic capillary chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 67:3626–3632 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Usami, A. Ohtsu, S. Takahama, and T. Fujii. The effect of pH, hydrogen peroxide and temperature on the stability of human monoclonal antibody. J. Pharm. Biomed. Anal. 14:1133–1140 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Liu, G. Gaza-Bulseco, and J. Sun. Characterization of the stability of a fully human monoclonal IgG after prolonged incubation at elevated temperature. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 837:35–43 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    T. M. Dillon, P. V. Bondarenko, and M. Speed Ricci. Development of an analytical reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry method for characterization of recombinant antibodies. J. Chromatogr. A. 1053:299–305 (2004).PubMedGoogle Scholar
  15. 15.
    T. M. Dillon, P. V. Bondarenko, D. S. Rehder, G. D. Pipes, G. R. Kleemann, and M. S. Ricci. Optimization of a reversed-phase high-performance liquid chromatography/mass spectrometry method for characterizing recombinant antibody heterogeneity and stability. J. Chromatogr. A. 1120:112–120 (2006).PubMedCrossRefGoogle Scholar
  16. 16.
    S. L. Cohen, C. Price, and J. Vlasak. Beta-elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage. J. Am. Chem. Soc. 129:6976–6977 (2007).PubMedCrossRefGoogle Scholar
  17. 17.
    A. S. Nashef, D. T. Osuga, H. S. Lee, A. I. Ahmed, J. R. Whitaker, and R. E. Feeney. Effects of alkali on proteins. Disulfides and their products. J. Agric. Food Chem. 25:245–51 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    T. M. Florence. Degradation of protein disulphide bonds in dilute alkali. Biochem. J. 189:507–520 (1980).PubMedGoogle Scholar
  19. 19.
    A. K. Galande, J. O. Trent, and A. F. Spatola. Understanding base-assisted desulfurization using a variety of disulfide-bridged peptides. Biopolymers. 71:534–551 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Xiang, E. Lundell, Z. Sun, and H. Liu. Structural effect of a recombinant monoclonal antibody on hinge region peptide bond hydrolysis. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 858:254–262 (2007).PubMedCrossRefGoogle Scholar
  21. 21.
    T. Geiger, and S. Clarke. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262:785–794 (1987).PubMedGoogle Scholar
  22. 22.
    M. Kats, P. C. Richberg, and D. E. Hughes. pH-dependent isoform transitions of a monoclonal antibody monitored by micellar electrokinetic capillary chromatography. Anal. Chem. 69:338–343 (1997).PubMedCrossRefGoogle Scholar
  23. 23.
    Z. I. Kravchuk, A. P. Vlasov, G. V. Liakhnovich, and S. P. Martsev. A stable conformer of IgG, prepared by an acidic influence: study by calorimetry, binding of the C1q complement component, and monospecific anti-IgG. Biokhimiia. 59:1458–77 (1994).PubMedGoogle Scholar
  24. 24.
    S. P. Martsev, Z. I. Kravchuk, and A. P. Vlasov. Large increase in thermal stability of the CH2 domain of rabbit IgG after acid treatment as evidenced by differential scanning calorimetry. Immunol. Lett. 43:149–152 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    S. P. Martsev, Z. I. Kravchuk, A. P. Vlasov, and G. V. Lyakhnovich. Thermodynamic and functional characterization of a stable IgG conformer obtained by renaturation from a partially structured low pH-induced state. FEBS Lett. 361:173–175 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    M. H. Tao, and S. L. Morrison. Studies of aglycosylated chimeric mouse–human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. 143:2595–2601 (1989).PubMedGoogle Scholar
  27. 27.
    J. Lund, T. Tanaka, N. Takahashi, G. Sarmay, Y. Arata, and R. Jefferis. A protein structural change in aglycosylated IgG3 correlates with loss of huFc gamma R1 and huFc gamma R111 binding and/or activation. Mol. Immunol. 27:1145–1153 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    H. Matsuda, S. Nakamura, Y. Ichikawa, K. Kozai, R. Takano, M. Nose, S. Endo, Y. Nishimura, and Y. Arata. Proton nuclear magnetic resonance studies of the structure of the Fc fragment of human immunoglobulin G1: comparisons of native and recombinant proteins. Mol. Immunol. 27:571–579 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Mimura, S. Church, R. Ghirlando, P. R. Ashton, S. Dong, M. Goodall, J. Lund, and R. Jefferis. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol. Immunol. 37:697–706 (2000).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Liu, G. G. Bulseco, and J. Sun. Effect of posttranslational modifications on the thermal stability of a recombinant monoclonal antibody. Immunol. Lett. 106:144–153 (2006).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Liu, G. Gaza-Bulseco, T. Xiang, and C. Chumsae. Structural effect of deglycosylation and methionine oxidation on a recombinant monoclonal antibody. Mol. Immunol. 45:701–708 (2008).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Process Sciences DepartmentAbbott Bioresearch CenterWorcesterUSA

Personalised recommendations