Pharmaceutical Research

, Volume 25, Issue 7, pp 1563–1571 | Cite as

Dissolution Enhancement by Bio-Inspired Mesocrystals: The Study of Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate

Research Paper



The aim of this paper is to enhance the dissolution rate of racemic (R,S)-(±)-sodium ibuprofen dihydrate via a bio-inspired method of growing mesocrystals.

Materials and Methods

Mesocrystals of racemic (R,S)-(±)-sodium ibuprofen dihydrate were successfully prepared from a supersaturated aqueous solution of racemic (R,S)-(±)-sodium ibuprofen dihydrate having the initial degree of supersaturation, S 0 , of 1.326 and the initial saturated concentration, C*, of 0.986 mol/l at 25°C with sodium dodecyl sulfate (SDS) at a concentration of 0.10 g/l. Dynamic light scattering, scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and optical microscopy with cross polarizers were employed to understand the formation mechanism and to characterize the superstructures of the SDS generated mesocrystals.


The SDS generated mesocrystals were the assembly of the oriented attachment of racemic (R,S)-(±)-sodium ibuprofen dihydrate nano-sized platelets under the mediation of the side-to-side interaction between SDS and racemic (R,S)-(±)-sodium ibuprofen dihydrate. The SDS generated mesocrystals contained a mixture of the racemic compounds in α- and β-forms and the resolved racemic conglomerate in γ-form with no detectable amount of SDS. The dissolution rate of the SDS generated mesocrystals was more rapid than the one of its counterpart made by conventional crystallization pathway.


The crystallization of racemic (R,S)-(±)-sodium ibuprofen dihydrate in the presence of SDS yielded well-faceted, well-separated, but almost perfectly three-dimensionally aligned nano-sized platelets. This kind of bio-inspired mesocrystal superstructure has definitely opened a new doorway for crystal engineering and pre-formulation design in pharmaceutical industry. The future work is to study the mesocrystal formation of some other active pharmaceutical ingredients in organic solvent systems and to develop an efficient method for screening the additives.

Key words

birefringence dissolution rate mesocrystals racemic (R,S)-(±)-sodium ibuprofen dihydrate sodium dodecyl sulfate 



This work was supported by a grant from the National Science Council of Taiwan, Republic of China (NSC 95-2113-M-008-012-MY2). Assistance from Ms. Jui-Mei Huang in DSC, Ms. Shew-Jen Weng in PXRD, and Ms. Ching-Tien Lin for SEM and EDS, and all with the Precision Instrument Center and High Valued Instrument Center at National Central University are gratefully acknowledged. We also thank the assistance from Ms. Yi-Yin Lai in DLS with Molecular BioEngineering Laboratory, and my four other students, Mr. Hsiang-Yu Hsieh, Mr. Yeh-Wen Wang, Mr. Hung-Ju Hou, and Mr. Yan-Chan Su in collecting SEM, DLS and dissolution data.


  1. 1.
    L. J. Sellars. Special report: Executive prophecies—pharmaceuticals in the new millennium. Pharm. Exec. 60–72 (January 2002).Google Scholar
  2. 2.
    Ö. Almarsson, and M. J. Zaworotko. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines. Chem. Commun. 17:1889–1896 (2004).Google Scholar
  3. 3.
    Trends in the Pharmaceutical Industry.
  4. 4.
    R. J. Bastin, M. J. Bowker, and B. J. Slater. Salt selection and optimisation procedures for pharmaceutical new chemical entities. Org. Proc. Res. Dev 4(5):427–435 (2000).CrossRefGoogle Scholar
  5. 5.
    S. N. Black, E. A. Collier, R. J. Davey, and R. J. Roberts. Structure, solubility, screening, and synthesis of molecular salts. J. Pharm. Sci 96(5):1053–1068 (2007).PubMedCrossRefGoogle Scholar
  6. 6.
    L. R. Hilden, and K. R. Morris. Physics of amorphous solids. J. Pharm. Sci 93(1):3–12 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. De Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. von Raumer. Polymorphism – Integrated approach from high-throughput screening to crystallization optimization. J. Therm. Anal. Calor 73(2):429–440 (2003).CrossRefGoogle Scholar
  8. 8.
    N. Blagden, and R. J. Davey. Polymorph selection: Challenges for the future? Cryst. Growth Des 3(6):873–885 (2003).CrossRefGoogle Scholar
  9. 9.
    T. Lee, S. T. Hung, and C. S. Kuo. Polymorph farming of acetaminophen and sulfathiazole on a chip. Pharm. Res 23(11):2542–2555 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    D. Singhal, and W. Curatolo. Drug polymorphism and dosage form design: A practical perspective. Adv. Drug Deliv. Rev 56(3):335–347 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Vishweshwar, J. A. McMahon, M. L. Peterson, M. B. Hickey, T. R. Shattock, and M. J. Zaworotko. Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients. Chem. Commun. 36:4601–4603 (2005).Google Scholar
  12. 12.
    S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev 56(3):275–300 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Koshima, and M. Miyauchi. Polymorphs of a cocrystal with achiral and chiral structures prepared by pseudoseeding: tryptamine/hydrocinnamic acid. Cryst. Growth Des 1(5):355–357 (2001).CrossRefGoogle Scholar
  14. 14.
    G. G. Z. Zhang, R. F. Henry, T. B. Borchardt, and X. Lou. Efficient co-crystal screening using solution-mediated phase transformation. J. Pharm. Sci 96(5):990–995 (2007).PubMedCrossRefGoogle Scholar
  15. 15.
    A. M. Thayer. Form and Function. C&EN, 17–30 (June 18 2007).Google Scholar
  16. 16.
    A. T. M. Serajuddin. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci 88(10):1058–1066 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Lee, and J. Lee. Drug-carrier screening on a chip. Pharm. Tech 27(1):40–48 (2003).Google Scholar
  18. 18.
    J.-F. Chen, M.-Y. Zhou, L. Shao, Y.-Y. Wang, J. Yun, N. Y. K. Chew, and H-K. Chan. Feasibility of preparing nanodrugs by high-gravity reactive precipitation. Inter. J. Pharm 269(1):267–274 (2004).CrossRefGoogle Scholar
  19. 19.
    S. X. Yin, M. Franchini, J. Chen, A. Hsieh, S. Jen, T. Lee, M. Hussain, and R. Smith. Bioavailability enhancement of a COX-2 inhibitor, BMS-347070, from a nanocrystalline dispersion prepared by spray-drying. J. Pharm. Sci. 94(7):1598–1607.Google Scholar
  20. 20.
    N. A. Peppas. Intelligent therapeutics: biomimetic systems and nanotechnology in drug delivery. Adv. Drug Deliv. Rev 56(11):1529–1531 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Van Arnum. Nanotechnology advances in drug delivery. Pharm. Tech 31(6):48–52 (2007).Google Scholar
  22. 22.
    I. Soten, and G. A. Ozin. New directions in self-assembly: materials synthesis over “all” length scales. Curr. Opin. Colloid Inter. Sci 4(5):325–337 (1999).CrossRefGoogle Scholar
  23. 23.
    Y. Oaki, and H. Imai. Hierarchially organized superstructure emerging from the exquisite association of inorganic crystals, organic polymers, and dyes: a model approach towards suprabiomineral materials. Adv. Funct. Mater 15(9):1407–1414 (2005).CrossRefGoogle Scholar
  24. 24.
    A.-W. Xu, Y. Ma, and H. Cölfen. Biomimetic mineralization. J. Mater. Chem 17(5):415–449 (2007).CrossRefGoogle Scholar
  25. 25.
    H. Cölfen, and M. Antonietti. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed 44(35):5576–5591 (2005).CrossRefGoogle Scholar
  26. 26.
    H. Cölfen, and S. Mann. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed 42(20):2350–2365 (2003).CrossRefGoogle Scholar
  27. 27.
    Y. Ma, H. Cölfen, and M. Antonietti. Morphosynthesis of alanine mesocrystals by pH control. J. Phys. Chem. B 110(22):10822–10828 (2006).PubMedCrossRefGoogle Scholar
  28. 28.
    C.-M. Chun. Hydrothermal crystallization of barium titanate: mechanisms of nucleation and growth. Ph. D. Dissertation, Department of Geosciences, Princeton University, June 1997.Google Scholar
  29. 29.
    I. Katzhendler, R. Azoury, and M. Friedman. Crystalline properties of carbamazepine in sustained release hydrophilic matrix tablets based on hydroxypropyl methylcellulose. J. Control. Release 54(1):69–85 (1998).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Wohlrab, N. Pinna, M. Antonietti, and H. Cölfen. Polymer-induced alignment of DL- alanine nanocrystals to crystalline mesostructures. Chem. Eur. J 11(10):2903–2913 (2005).CrossRefGoogle Scholar
  31. 31.
    B. J. Armitage, J. F. Lampard, and A. Smith. Composition of S-Sodium ibuprofen. US Patent 6,242,000 B1 (2001).Google Scholar
  32. 32.
    T. Lee, Y. H. Chen, and Y. W. Wang. Effects of homochiral molecules of (S)-(+)-ibuprofen and (S)-(-)-sodium ibuprofen dihydrate on the crystallization kinetics of racemic (R,S)-(±)-sodium ibuprofen dihydrate. Cryst. Growth Des. 8(2):415–426 (2008).CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, and D. J. W. Grant. Similarity in structures of racemic and enantiomeric ibuprofen sodium dihydrates. Acta Cryst. C61(9):m435–m438 (2005).Google Scholar
  34. 34.
    G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant. Racemic species of sodium ibuprofen: characterization and polymorphic relationships. J. Pharm. Sci 92(7):1356–1366 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Behn. Sodium lauryl sulfate. In A. Wade, and P. J. Weller (eds.), Handbook of Pharmaceutical Excipients, 2American Pharmaceutical Association, Washington, USA, 1994, pp. 448–450.Google Scholar
  36. 36.
    Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du. In situ micelle-template-interface reaction route to CdS nanotubes and nanowires. J. Mater. Chem 12(12):3712–3716 (2002).CrossRefGoogle Scholar
  37. 37.
    N. Jongen, P. Bowen, J. Lemaītre, J.-C. Valmalette, and H. Hofmann. Precipitation of Self-organized copper oxalate polycrystalline particles in the presence of hydroxypropylmethylcellulose (HPMC): control of morphology. J. Colloid Inter. Sci 226(2):189–198 (2000).CrossRefGoogle Scholar
  38. 38.
    W. Sorasuchart, J. Wardrop, and J. W. Ayres. Drug release from spray layered and coated drug-containing beads: effects of pH and comparison of different dissolution methods. Drug Dev. Ind. Pharm 25(10):1093–1098 (1999).PubMedCrossRefGoogle Scholar
  39. 39.
    A. T. M. Serajuddin. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev 59(7):603–616 (2007).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Ridell, H. Evertsson, S. Nilson, and L. Sundelöf. Amphiphilic association of ibuprofen and two nonionic cellulose derivatives in aqueous solution. J. Pharm. Sci 88(11):1175–1181 (2000).CrossRefGoogle Scholar
  41. 41.
    A. L. D. Vries, and T. J. Price. Role of glycopeptides and peptides in inhibition of crystallization of water in polar fishes. Phil. Trans. R. Soc. Lond. B 304(1121):575–588 (1984).CrossRefGoogle Scholar
  42. 42.
    H. P. Klug, and L. E. Alexander. Crystallite size and lattice strains from line broadening. Chapter 9 in X-ray Diffraction Procedures, 2nd ed., Wiley, New York, 1974, pp. 657–661.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringNational Central UniversityJhong-Li CityRepublic of China
  2. 2.Institute of Materials Science and EngineeringNational Central UniversityJhong-Li CityRepublic of China

Personalised recommendations