Skip to main content

Advertisement

Log in

Design of Biodegradable Hydrogel for the Local and Sustained Delivery of Angiogenic Plasmid DNA

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To attain the effective local and sustained delivery of plasmid DNA (pDNA) encoding for a growth factor.

Methods

We hypothesized that controlling the degradation rate of biomaterials encapsulating pDNA via concurrent physical dissociation of the cross-linked structure and hydrolytic chain breakage of polymers would allow one to significantly broaden the range of pDNA release rate. This hypothesis was examined using ionically cross-linked polysaccharide hydrogels which were previously designed to rapidly degrade via engineering of ionic cross-linking junction and partial oxidation of polysaccharide chains.

Results

The hydrogel degradation rates were varied over the broad range, and pDNA release correlated with the gel degradation rate. Degradable hydrogels were used for the local and sustained delivery of a pDNA encoding for vascular endothelial growth factor (VEGF) in the ischemic hindlimbs of mice, and local pDNA release significantly improved the recovery of blood perfusion as compared with a bolus injection of VEGFencoding pDNA.

Conclusion

This strategy to control the hydrogel degradation rate may be useful in regulating the delivery of a broad array of macromolecular drugs, and subsequently improve their therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. W. Losordo and S. Dimmeler. Therapeutic angiogenesis and vasculogenesis for ischemic disease—Part II: Cell-based therapies. Circulation 109:2692–2697 (2004).

    Article  PubMed  Google Scholar 

  2. D. W. Losordo and S. Dimmeler. Therapeutic angiogenesis and vasculogenesis for ischemic disease—Part I: Angiogenic cytokines. Circulation 109:2487–2491 (2004).

    Article  PubMed  Google Scholar 

  3. J. M. Isner. Myocardial gene therapy. Nature 415:234–239 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. A. A. Kocher, M. D. Schuster, M. J. Szabolcs, S. Takuma, D. Burkhoff, J. Wang, S. Homma, N. M. Edwards, and S. Itescu. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7:430–436 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. J. M. Isner, and D. W. Losordo. Therapeutic angiogenesis for heart failure. Nat. Med. 5:491–492 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. F. J. Giordano, P. P. Ping, M. D. McKirnan, S. Nozaki, A. N. DeMaria, W. H. Dillmann, O. MathieuCostello, and H. K. Hammond. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat. Med. 2:534–539 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Tsurumi, S. Takeshita, D. F. Chen, M. Kearney, S. T. Rossow, J. Passeri, J. R. Horowitz, J. F. Symes, and J. M. Isner. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 94:3281–3290 (1996).

    PubMed  CAS  Google Scholar 

  9. S. Takeshita, Y. Tsurumi, T. Couffinahl, T. Asahara, C. Bauters, J. Symes, N. Ferrara, and J. M. Isner. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab. Invest. 75:487–501 (1996).

    PubMed  CAS  Google Scholar 

  10. X. J. Hao, A. Mansson-Broberg, P. Blomberg, G. Dellgren, A. J. Siddiqui, K. H. Grinnemo, E. Wardell, and C. Sylven. Angiogenic and cardiac functional effects of dual gene transfer of VEGF-A(165) and PDGF-BB after myocardial infarction. Biochem. Biophys. Res. Commun. 322:292–296 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. A. J. Comerota, R. C. Throm, K. A. Miller, T. Henry, N. Chronos, J. Laird, R. Sequeira, C. K. Kent, M. Bacchetta, C. Goldman, J. P. Salenius, F. A. Schmieder, and R. Pilsudski. Naked plasmid DNA encoding fibroblast growth factor type I for the treatment of end-stage unreconstructible lower extremity ischemia: Preliminary results of a phase I trial. J. Vasc. Surg. 35:930–936 (2002).

    Article  PubMed  Google Scholar 

  12. C. Madeira, L. M. S. Loura, M. R. Aires-Barros, A. Fedorov, and M. Prieto. Characterization of DNA/lipid complexes by fluorescence resonance energy transfer. Biophys. J. 85:3106–3119 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. M. D. Brown, A. G. Schatzlein, and I. F. Uchegbu. Gene delivery with synthetic (non viral) carriers. Int. J. Pharm. 229:1–21 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. C. L. Densmore, F. M. Orson, B. Xu, B. M. Kinsey, J. C. Waldrep, P. Hua, B. Bhogal, and V. Knight. Aerosol delivery of robust polyethyleneimine-DNA complexes for gene therapy and genetic immunization. Molec. Ther. 1:180–188 (2000).

    Article  CAS  Google Scholar 

  15. L. J. Branden, A. J. Mohamed, and C. I. E. Smith. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17:784–787 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. R. C. Adami, W. T. Collard, S. A. Gupta, K. Y. Kwok, J. Bonadio, and K. G. Rice. Stability of peptide condensed plasmid DNA formulations. J. Pharm. Sci. 87:678–683 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection—A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U. S. A. 84:7413–7417 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. E. A. Silva, and D. J. Mooney. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J. Thrombos. Haemost. 5:590–598 (2007).

    Article  CAS  Google Scholar 

  19. D. H. Walter, M. Cejna, L. Diaz-Sandoval, S. Willis, L. Kirkwood, P. W. Stratford, A. B. Tietz, R. Kirchmair, M. Silver, C. Curry, A. Wecker, Y. S. Yoon, R. Heidenreich, A. Hanley, M. Kearney, F. O. Tio, P. Kuenzler, J. M. Isner, and D. W. Losordo. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents—An alternative strategy for inhibition of restenosis. Circulation 110:36–45 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Y. X. Lu, J. Shansky, M. Del Tatto, P. Ferland, X. Y. Wang, and H. Vandenburgh. Recombinant vascular endothelial growth factor secreted from tissue-engineered bioartificial muscles promotes localized angiogenesis. Circulation 104:594–599 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. J. Bonadio, E. Smiley, P. Patil, and S. Goldstein. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 5:753–759 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. L. De Laporte, and L. D. Shea. Matrices and scaffolds for DNA delivery in tissue engineering. Adv. Drug Deliv. Rev. 59:292–307 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. J. H. Jang, C. B. Rives, and L. D. Shea. Plasmid delivery in vivo from porous tissue-engineering scaffolds: Transgene expression and cellular tansfection. Molec. Ther. 12:475–483 (2005).

    Article  CAS  Google Scholar 

  24. S. Jilek, H. Zurkaulen, J. Pavlovic, H. P. Merkle, and E. Walter. Transfection of a mouse dendritic cell line by plasmid DNA-loaded PLGA microparticles in vitro. Eur. J. Pharm. Biopharm. 58:491–499 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. J. H. Jeong, and T. G. Park. Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(d,l-lactic-co-glycolic acid) and hydrophilic oligonucleotides. Bioconjug. Chem. 12:917–923 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. Y. Fukunaka, K. Iwanaga, K. Morimoto, M. Kakemi, and Y. Tabata. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J. Control. Release 80:333–343 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. Z. H. Li, W. Ning, J. M. Wang, A. Choi, P. Y. Lee, P. Tyagi, and L. Huang. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20:884–888 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. F. K. Kasper, S. K. Seidlits, A. Tang, R. S. Crowther, D. H. Carney, M. A. Barry, and A. G. Mikos. In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control. Release 104:521–539 (2005).

    PubMed  CAS  Google Scholar 

  29. J. A. Wieland, T. L. Houchin-Ray, and L. D. Shea. Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J. Control. Release 120:233–241 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. H. J. Kong, E. Alsberg, D. Kaigler, K. Y. Lee, and D. J. Mooney. Controlling degradation of hydrogels via the size of cross-linked junctions. Adv. Mater. 16:1917–1921 (2004).

    Article  CAS  Google Scholar 

  31. H. J. Kong, D. Kaigler, K. Kim, and D. J. Mooney. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5:1720–1727 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. K. S. Anseth, C. N. Bowman, and L. BrannonPeppas. Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. H. J. Kong, S. Hsiong, and D. J. Mooney. Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett. 7:161–166 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. T. Couffinhal, M. Silver, L. P. Zheng, M. Kearney, B. Witzenbichler, and J. M. Isner. Mouse model of angiogenesis. Am. J. Pathol. 152:1667–1679 (1998).

    PubMed  CAS  Google Scholar 

  35. Y. B. Xie, S. T. Yang, and D. A. Kniss. Three-dimensional cell-scaffold constructs promote efficient gene transfection: Implications for cell-based gene therapy. Tissue Eng. 7:585–598 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. N. J. Meilander-Lin, P. J. Cheung, D. L. Wilson, and R. V. Bellamkonda. Sustained in vivo gene delivery from agarose hydrogel prolongs nonviral gene expression in skin. Tissue Eng. 11:546–555 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. S. Jain, W. T. Yap, and D. J. Irvine. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and CpG oligonucleotide delivery to antigen-presenting cells. Biomacromolecules 6:2590–2600 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the NIH (RO1 DE013033 and RO1 HL069957) for the financial support of this research. The authors also thank Mr. Francis Rauh of FMC Corporation for supplying the alginate samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Mooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, H.J., Kim, E.S., Huang, YC. et al. Design of Biodegradable Hydrogel for the Local and Sustained Delivery of Angiogenic Plasmid DNA. Pharm Res 25, 1230–1238 (2008). https://doi.org/10.1007/s11095-007-9526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9526-7

Key words

Navigation