Pharmaceutical Research

, Volume 25, Issue 5, pp 1230–1238 | Cite as

Design of Biodegradable Hydrogel for the Local and Sustained Delivery of Angiogenic Plasmid DNA

  • Hyun Joon Kong
  • Eun Seok Kim
  • Yen-Chen Huang
  • David J. Mooney
Research Paper



To attain the effective local and sustained delivery of plasmid DNA (pDNA) encoding for a growth factor.


We hypothesized that controlling the degradation rate of biomaterials encapsulating pDNA via concurrent physical dissociation of the cross-linked structure and hydrolytic chain breakage of polymers would allow one to significantly broaden the range of pDNA release rate. This hypothesis was examined using ionically cross-linked polysaccharide hydrogels which were previously designed to rapidly degrade via engineering of ionic cross-linking junction and partial oxidation of polysaccharide chains.


The hydrogel degradation rates were varied over the broad range, and pDNA release correlated with the gel degradation rate. Degradable hydrogels were used for the local and sustained delivery of a pDNA encoding for vascular endothelial growth factor (VEGF) in the ischemic hindlimbs of mice, and local pDNA release significantly improved the recovery of blood perfusion as compared with a bolus injection of VEGFencoding pDNA.


This strategy to control the hydrogel degradation rate may be useful in regulating the delivery of a broad array of macromolecular drugs, and subsequently improve their therapeutic efficacy.

Key words

blood perfusion degradation gene expression therapeutic angiogenesis 



The authors thank the NIH (RO1 DE013033 and RO1 HL069957) for the financial support of this research. The authors also thank Mr. Francis Rauh of FMC Corporation for supplying the alginate samples.


  1. 1.
    D. W. Losordo and S. Dimmeler. Therapeutic angiogenesis and vasculogenesis for ischemic disease—Part II: Cell-based therapies. Circulation 109:2692–2697 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    D. W. Losordo and S. Dimmeler. Therapeutic angiogenesis and vasculogenesis for ischemic disease—Part I: Angiogenic cytokines. Circulation 109:2487–2491 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    J. M. Isner. Myocardial gene therapy. Nature 415:234–239 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    A. A. Kocher, M. D. Schuster, M. J. Szabolcs, S. Takuma, D. Burkhoff, J. Wang, S. Homma, N. M. Edwards, and S. Itescu. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7:430–436 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    J. M. Isner, and D. W. Losordo. Therapeutic angiogenesis for heart failure. Nat. Med. 5:491–492 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    F. J. Giordano, P. P. Ping, M. D. McKirnan, S. Nozaki, A. N. DeMaria, W. H. Dillmann, O. MathieuCostello, and H. K. Hammond. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat. Med. 2:534–539 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Tsurumi, S. Takeshita, D. F. Chen, M. Kearney, S. T. Rossow, J. Passeri, J. R. Horowitz, J. F. Symes, and J. M. Isner. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 94:3281–3290 (1996).PubMedGoogle Scholar
  9. 9.
    S. Takeshita, Y. Tsurumi, T. Couffinahl, T. Asahara, C. Bauters, J. Symes, N. Ferrara, and J. M. Isner. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab. Invest. 75:487–501 (1996).PubMedGoogle Scholar
  10. 10.
    X. J. Hao, A. Mansson-Broberg, P. Blomberg, G. Dellgren, A. J. Siddiqui, K. H. Grinnemo, E. Wardell, and C. Sylven. Angiogenic and cardiac functional effects of dual gene transfer of VEGF-A(165) and PDGF-BB after myocardial infarction. Biochem. Biophys. Res. Commun. 322:292–296 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    A. J. Comerota, R. C. Throm, K. A. Miller, T. Henry, N. Chronos, J. Laird, R. Sequeira, C. K. Kent, M. Bacchetta, C. Goldman, J. P. Salenius, F. A. Schmieder, and R. Pilsudski. Naked plasmid DNA encoding fibroblast growth factor type I for the treatment of end-stage unreconstructible lower extremity ischemia: Preliminary results of a phase I trial. J. Vasc. Surg. 35:930–936 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Madeira, L. M. S. Loura, M. R. Aires-Barros, A. Fedorov, and M. Prieto. Characterization of DNA/lipid complexes by fluorescence resonance energy transfer. Biophys. J. 85:3106–3119 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    M. D. Brown, A. G. Schatzlein, and I. F. Uchegbu. Gene delivery with synthetic (non viral) carriers. Int. J. Pharm. 229:1–21 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    C. L. Densmore, F. M. Orson, B. Xu, B. M. Kinsey, J. C. Waldrep, P. Hua, B. Bhogal, and V. Knight. Aerosol delivery of robust polyethyleneimine-DNA complexes for gene therapy and genetic immunization. Molec. Ther. 1:180–188 (2000).CrossRefGoogle Scholar
  15. 15.
    L. J. Branden, A. J. Mohamed, and C. I. E. Smith. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17:784–787 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    R. C. Adami, W. T. Collard, S. A. Gupta, K. Y. Kwok, J. Bonadio, and K. G. Rice. Stability of peptide condensed plasmid DNA formulations. J. Pharm. Sci. 87:678–683 (1998).PubMedCrossRefGoogle Scholar
  17. 17.
    P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection—A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U. S. A. 84:7413–7417 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    E. A. Silva, and D. J. Mooney. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J. Thrombos. Haemost. 5:590–598 (2007).CrossRefGoogle Scholar
  19. 19.
    D. H. Walter, M. Cejna, L. Diaz-Sandoval, S. Willis, L. Kirkwood, P. W. Stratford, A. B. Tietz, R. Kirchmair, M. Silver, C. Curry, A. Wecker, Y. S. Yoon, R. Heidenreich, A. Hanley, M. Kearney, F. O. Tio, P. Kuenzler, J. M. Isner, and D. W. Losordo. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents—An alternative strategy for inhibition of restenosis. Circulation 110:36–45 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. X. Lu, J. Shansky, M. Del Tatto, P. Ferland, X. Y. Wang, and H. Vandenburgh. Recombinant vascular endothelial growth factor secreted from tissue-engineered bioartificial muscles promotes localized angiogenesis. Circulation 104:594–599 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Bonadio, E. Smiley, P. Patil, and S. Goldstein. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 5:753–759 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    L. De Laporte, and L. D. Shea. Matrices and scaffolds for DNA delivery in tissue engineering. Adv. Drug Deliv. Rev. 59:292–307 (2007).PubMedCrossRefGoogle Scholar
  23. 23.
    J. H. Jang, C. B. Rives, and L. D. Shea. Plasmid delivery in vivo from porous tissue-engineering scaffolds: Transgene expression and cellular tansfection. Molec. Ther. 12:475–483 (2005).CrossRefGoogle Scholar
  24. 24.
    S. Jilek, H. Zurkaulen, J. Pavlovic, H. P. Merkle, and E. Walter. Transfection of a mouse dendritic cell line by plasmid DNA-loaded PLGA microparticles in vitro. Eur. J. Pharm. Biopharm. 58:491–499 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    J. H. Jeong, and T. G. Park. Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(d,l-lactic-co-glycolic acid) and hydrophilic oligonucleotides. Bioconjug. Chem. 12:917–923 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Fukunaka, K. Iwanaga, K. Morimoto, M. Kakemi, and Y. Tabata. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J. Control. Release 80:333–343 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    Z. H. Li, W. Ning, J. M. Wang, A. Choi, P. Y. Lee, P. Tyagi, and L. Huang. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20:884–888 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    F. K. Kasper, S. K. Seidlits, A. Tang, R. S. Crowther, D. H. Carney, M. A. Barry, and A. G. Mikos. In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control. Release 104:521–539 (2005).PubMedGoogle Scholar
  29. 29.
    J. A. Wieland, T. L. Houchin-Ray, and L. D. Shea. Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J. Control. Release 120:233–241 (2007).PubMedCrossRefGoogle Scholar
  30. 30.
    H. J. Kong, E. Alsberg, D. Kaigler, K. Y. Lee, and D. J. Mooney. Controlling degradation of hydrogels via the size of cross-linked junctions. Adv. Mater. 16:1917–1921 (2004).CrossRefGoogle Scholar
  31. 31.
    H. J. Kong, D. Kaigler, K. Kim, and D. J. Mooney. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5:1720–1727 (2004).PubMedCrossRefGoogle Scholar
  32. 32.
    K. S. Anseth, C. N. Bowman, and L. BrannonPeppas. Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657 (1996).PubMedCrossRefGoogle Scholar
  33. 33.
    H. J. Kong, S. Hsiong, and D. J. Mooney. Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett. 7:161–166 (2007).PubMedCrossRefGoogle Scholar
  34. 34.
    T. Couffinhal, M. Silver, L. P. Zheng, M. Kearney, B. Witzenbichler, and J. M. Isner. Mouse model of angiogenesis. Am. J. Pathol. 152:1667–1679 (1998).PubMedGoogle Scholar
  35. 35.
    Y. B. Xie, S. T. Yang, and D. A. Kniss. Three-dimensional cell-scaffold constructs promote efficient gene transfection: Implications for cell-based gene therapy. Tissue Eng. 7:585–598 (2001).PubMedCrossRefGoogle Scholar
  36. 36.
    N. J. Meilander-Lin, P. J. Cheung, D. L. Wilson, and R. V. Bellamkonda. Sustained in vivo gene delivery from agarose hydrogel prolongs nonviral gene expression in skin. Tissue Eng. 11:546–555 (2005).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Jain, W. T. Yap, and D. J. Irvine. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and CpG oligonucleotide delivery to antigen-presenting cells. Biomacromolecules 6:2590–2600 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hyun Joon Kong
    • 1
    • 2
  • Eun Seok Kim
    • 1
    • 3
  • Yen-Chen Huang
    • 4
  • David J. Mooney
    • 1
  1. 1.Division of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Department of Chemical and Biomolecular Engineering, Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.School of MedicineChungnam National UniversityDaejeonSouth Korea
  4. 4.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations