Pharmaceutical Research

, Volume 25, Issue 7, pp 1521–1530 | Cite as

Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine

  • Elisabetta Esposito
  • Martina Fantin
  • Matteo Marti
  • Markus Drechsler
  • Lydia Paccamiccio
  • Paolo Mariani
  • Elisa Sivieri
  • Francesco Lain
  • Enea Menegatti
  • Michele Morari
  • Rita Cortesi
Research Paper



The present investigation describes a formulative study for the development of innovative drug delivery systems for bromocriptine.


Solid lipid nanoparticles (SLN) based on different lipidic components have been produced and characterized. Morphology and dimensional distribution have been investigated by electron microscopy and Photon Correlation Spectroscopy. The antiparkinsonian activities of free bromocriptine and bromocriptine encapsulated in nanostructured lipid carriers were evaluated in 6-hydroxydopamine hemilesioned rats, a model of Parkinson’s disease.


Tristearin/tricaprin mixture resulted in nanostructured lipid carriers with stable mean diameter up to 6 months from production. Bromocriptine was encapsulated with high entrapment efficiency in all of the SLN samples, particularly in the case of tristearin/tricaprin mixture. Bromocriptine encapsulation did not change nanoparticle dimensions. In vitro release kinetics based on a dialysis method demonstrated that bromocriptine was released in a prolonged fashion for 48 h. Tristearin/tricaprin nanoparticles better controlled bromocriptine release. Both free and encapsulated bromocriptine reduced the time spent on the blocks (i.e. attenuated akinesia) in the bar test, although the action of encapsulated bromocriptine was more rapid in onset and prolonged.


It can be concluded that nanostructured lipid carriers encapsulation may represent an effective strategy to prolong the half-life of bromocriptine.

Key words

bar test bromocriptine (BK) cryo transmission electron microscopy nanostructured lipid carrier (NLC) photon correlation spectroscopy (PCS) solid lipid nanoparticles (SLN) 



Authors are grateful to Dr. Fabrizio Bortolotti (University of Ferrara) for HPLC technical assistance. This work was supported by Regione Emilia Romagna, Spinner Project.


  1. 1.
    H. Bunjes, M. Drechsler, M. H. J. Koch, and K. Westesen. Incorporation of the Model Drug Ubidecarenone into Solid Lipid Nanoparticles. Pharm. Res. 18:287–293 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    K. Westesen and B. Siekmann. Biodegradable colloidal drug carrier systems based on solid lipids. In S. Benita (ed.), Microencapsulation, Marcel Dekker, New York, 1996, pp. 213–258.Google Scholar
  3. 3.
    K. Westesen, H. Bunjes, and M.H.J. Koch. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Rel. 48:223–23 (1997).CrossRefGoogle Scholar
  4. 4.
    R.H. Muller, K. Mader, and S. Gohla. Solid lipid nanoparticles (SLN) for controlled delivery-a review of the state of the art. Eur J Pharm Biopharm. 50:161–177 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    W. Mehnert, and K. Mader. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 47:165–196 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Dingler, and S.H. Gohla. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul 19:11–18 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    V. Jenning, A. Lippacher, and S.H. Gohla. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenisation. J Microencapsul 19:1–10 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Lippacher, R.H. Muller, and K. Mader. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm. 214:9–12 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    A.V. Kabanov, and E.V. Batrakova. New technologies for drug delivery across the blood brain barrier. Curr. Pharm. Des. 10:1355–1363 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Temsamani, J. M. Scherrmann, A. R. Rees, and M. Kaczorek. Brain drug delivery technologies: novel approaches for transporting therapeutics. PSTT. 3:2000 (2000).Google Scholar
  11. 11.
    E.H. Lo, A.B. Singhal, V.P. Torchilin, and N.J. Abbott. Drug delivery to damaged brain. Brain Res Brain Res Rev. 38:140–148 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    N. Bodor, and P. Buchwald. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Ad. Drug Deliv Rev. 36:229–254 (1999).CrossRefGoogle Scholar
  13. 13.
    T. Terasaki, and K. Hosoya. The blood–brain barrier efflux transporters as a detoxifying system for the brain. Adv Drug Deliv Rev. 36:195–209 (1999).PubMedCrossRefGoogle Scholar
  14. 14.
    E. Garcia-Garcia, K. Andrieux, S. Gilb, and P. Couvreur. Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain. Int J Pharm. 298:274–292 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    A.J. Hughes, S.E. Daniel, S. Blankson, and A.J. Lees. Clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol. 50:140–148 (1993).PubMedGoogle Scholar
  16. 16.
    O. Rascol, C. Goetz, W. Koller, W. Poewe, and C. Sampaio. Treatment interventions for parkinson’s disease: an evidence based assessment. Lancet. 359:1589–1598 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    J.A. Obeso, C.W. Olanow, and J.G. Nutt. Levodopa motor complications in Parkinson’s disease. Trends Neurosci. 23:S2–S7 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    J.A. Obeso, F. Grandas, M.T. Herrero, and R. Horowski. The role of pulsatile versus continuous dopamine receptor stimulation for functional recovery in Parkinson's disease. Eur J Neurosci. 6:889–897 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Kvermo, S. Hartter, and E. Burger. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 28:1065–1078 (2006).CrossRefGoogle Scholar
  20. 20.
    R.K.B. Pearce, T. Banerji, P. Jenner, and C.D. Marsden. De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-DOPA in the MPTP-treated marmoset. Mov Disord. 13:234–241 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    R.K.W. Schwarting, and J.P. Huston. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol. 50:275–331 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Esposito, N. Eblovi, S. Rasi, M. Drechsler, G. M. Di Gregorio, E. Menegatti, and R. Cortesi. Lipid based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci. 5:4 Article 30 (2003).CrossRefGoogle Scholar
  23. 23.
    D.E. Koppel. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. J. Chem. Phys. 57:4814–4820 (1972).CrossRefGoogle Scholar
  24. 24.
  25. 25.
    R. Pecora. Dynamic Light Scattering Measurement of Nanometer Particles in Liquids J. Nanoparticle Res. 2:123–131 (2000).CrossRefGoogle Scholar
  26. 26.
    P. Mariani, V. Luzzati, and H. Delacroix. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol. 204:165–189 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Marti, F. Mela, M. Fantin, S. Zucchini, J.M. Brown, J. Witta, M. DiBenedetto, B. Buzas, R.K. Reinscheid, S. Salvadori, R. Guerrini, P. Romualdi, S. Candeletti, M. Simonato, B.M. Cox, and M. Morari. Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. J Neurosci. 95:9591–9601 (2005).CrossRefGoogle Scholar
  28. 28.
    G. Paxinos and C. Watson. The rat brain in stereotaxic coordinates. Ed. Academic, Sydney (1982).Google Scholar
  29. 29.
    U. Ungerstedt, and G.W. Arbuthnott. Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 24:485–493 (1970).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Marti, C. Trapella, R. Viaro, and M. Morari. The nociceptin/orphanin FQ receptor antagonist J-113397 and L-DOPA additively attenuate experimental parkinsonism through overinhibition of the nigrothalamic pathway. J Neurosci. 27:1297–1307 (2007).PubMedCrossRefGoogle Scholar
  31. 31.
    P.R. Sanberg, M.D. Bunsey, M. Giordano, and A.B. Norman. The catalepsy test: ist ups and downs. Behav Neurosci. 102:748–759 (1988).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann, and K. Maeder. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release. 95:217–227 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    J.C. Olivier, L. Fenart, R. Chauvet, C. Pariat, R. Cecchelli, and W. Couet. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res. 16:1836–1842 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Kreuter. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 47:65–81 (2001).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Ulrike, S. Petra, U. Sven, and B.A. Sabel. Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci. 87:1305–1307 (1998).CrossRefGoogle Scholar
  36. 36.
    R.P. Lockmana, M.O. Oyewumi, J.M. Koziara, K.E. Roder, R.J. Mumper, and D.D. Allen. Brain uptake of thiamine-coated nanoparticles. J. Control Release. 93:271–282 (2003).CrossRefGoogle Scholar
  37. 37.
    Z.R. Zhang, J.X. Wang, and J. Lu. Optimization of the preparation of 30,50-dioctanoyl-5-fluoro-20-deoxyuridine pharmacosomes using central composite design. Acta Pharmaceutica Sinica. 36:461–465 (2001).Google Scholar
  38. 38.
    Y.X. Peng, Y.L. Zhuang, and G.T. Liao. Study on bone marrow targeting daunorubicin polybutylcyanoacrylate nanoparticles. Chin. J. Pharm. 31:57–61 (2000).Google Scholar
  39. 39.
    S.M. Moghimi. Mechanisms regulating body distribution of nanospheres conditioned with pluronic and tetronic block co-polymers. Adv. Drug Deliv. Rev. 16:183–186 (1995).CrossRefGoogle Scholar
  40. 40.
    P. Calvo, B. Gouritin, H. Villarroya, F. Eclancher, C. Giannavola, C. Klein, J.P. Andreux, and P. Couvreur. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur. J. Neurosci. 15:1317–1326 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    I. Brigger, J. Morizet, G. Aubert, H. Chacun, M.J. Terrier-Lacombe, P. Couvreur, and G. Vassal. Poly(ethylene glycol)- coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J. Pharmacol Exp. Ther. 303:928–936 (2002).PubMedCrossRefGoogle Scholar
  42. 42.
    J. Kreuter. Delivery of loperamide across the blood-brain barrier with Polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res. 14:325–328 (1997).PubMedCrossRefGoogle Scholar
  43. 43.
    J.M. Koziara, P.R. Lockman, D.D. Allen, and R.J. Mumper. In situ blood-brain barrier transport of nanoparticles. Pharm. Res. 20:1772–1778 (2003).Google Scholar
  44. 44.
    S.C. Yang, L.F. Lu, Y. Cai, J.B. Zhu, B.W. Liang, and C.Z. Yang. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control Release. 59:299–307 (1999).PubMedCrossRefGoogle Scholar
  45. 45.
    S.B. Tiwari, and M.M. Amiji. A Review of Nanocarrier-Based CNS Delivery Systems. Current Drug Delivery. 3:219–232 (2006).PubMedCrossRefGoogle Scholar
  46. 46.
    E.L. Lane, S.C. Cheetam, and P. Jenner. Does contraversive circling in the 6-OHDA-lesioned rat indicate an ability to induce motor complications as well as therapeutic effects in Parkinson's disease. Exp. Neurol. 197:284–290 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Elisabetta Esposito
    • 1
    • 5
  • Martina Fantin
    • 2
  • Matteo Marti
    • 2
  • Markus Drechsler
    • 3
  • Lydia Paccamiccio
    • 4
  • Paolo Mariani
    • 4
  • Elisa Sivieri
    • 1
  • Francesco Lain
    • 1
  • Enea Menegatti
    • 1
  • Michele Morari
    • 2
  • Rita Cortesi
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of FerraraFerraraItaly
  2. 2.Department of Experimental and Clinical Medicine, Section of Pharmacology, and Istituto Nazionale di NeuroscienzeUniversity of FerraraFerraraItaly
  3. 3.Macromolecular Chemistry IIUniversity of BayreuthBayreuthGermany
  4. 4.Department of Science Applied to Complex Systems and CNISMUniversità Politecnica delle MarcheAnconaItaly
  5. 5.Dipartimento di Scienze FarmaceuticheFerraraItaly

Personalised recommendations