Skip to main content
Log in

Poly (amino ester) Composed of Poly (ethylene glycol) and Aminosilane Prepared by Combinatorial Chemistry as a Gene Carrier

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Application of combinatorial chemistry and high throughput screening for the synthesis and evaluation of mini-library of novel biodegradable poly (β-amino ester)s (PAE)s composed of γ-aminopropyl-triethoxysilane (APES) and poly (ethylene glycol) diacrylate (PEGDA) for gene delivery efficiency and safety in 293T and HeLa cells in the presence of and absence of serum.

Materials and methods

PAEs were synthesized at different mole ratios of APES and PEGDA by Michael addition reaction and synthesis was confirmed by 1H nuclear magnetic resonance (1H-NMR). Ninety six ratios of polyplexes were evaluated for luciferase and MTS assay in 293T and HeLa cells in the presence of and absence of serum. Relationship between transfection efficiency and DNA binding ability of PAEs was studied by gel electrophoresis. Particle sizes and molecular weight of selected PAEs were measured by dynamic light scattering and gel permeation chromatography multi-angle light scattering, respectively.

Results

1H-NMR confirmed the synthesis of PAEs. In both cell lines, transfection efficiency and cell viability were increased for PAEs obtained from R106 (0.7:1, APES:PEGDA) to R121 (6:1, APES:PEGDA) with a marginal increase in APES concentration. Transfection pattern was uniform in the absence of and presence of serum. In both cell lines, PAE obtained from R121 demonstrated high transfection efficiency and low cytotoxicity as compared to polyethylenimine (25 KDa) and Lipofectamine. PAE obtained from R121 showed good DNA binding and condensation with average particle sizes of 133 nm.

Conclusion

Addition of PEGDA over APES resulted in a novel PAE which has high safety and transfection efficiency. Transfection and cytotoxicity are very sensitive to monomer ratios and mainly governed by concentration of amine monomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AEAPMS:

N-β-(aminoethyl)-γ-aminopropyl-trimethoxysilane

APES:

γ-aminopropyl-triethoxysilane

DMEM:

Dulbaco’s modified Eagles media

PAE:

poly (β-amino ester)

PEGDA:

poly (ethylene glycol) diacrylate

PEI 25K:

high molecular weight polyethylenimine (25 KDa)

RLU/mg protein:

Relative light units per milligram of protein

R106 to R121:

reaction codes representing PAEs obtained from different mole ratios of APES and PEGDA

References

  1. L. H. M.-C. H. E. Wagner. Nonviral Vectors for Gene Delivery, Academic Press, New York, 1999.

    Google Scholar 

  2. Y. Liu, D. Wu, Y. Ma, G. Tang, S. Wang, C. He, T. Chung, and S. Goh. Novel poly(amino ester)s obtained from Michael addition polymerizations of trifunctional amine monomers with diacrylates: safe and efficient DNA carriers. Chem. Commun. 2630–2631 (2003).

  3. A. Akinc, D. M. Lynn, D. G. Anderson, and R. Langer. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J. Am. Chem. Soc. 125:5316–5323 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. J. H. Lee, Y. B. Lim, J. S. Choi, Y. Lee, T. I. Kim, H. J. Kim, J. K. Yoon, K. Kim, and J. S. Park. Polyplexes assembled with internally quaternized PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjug. Chem. 14:1214–1221 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4:581–593 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. K. C. Cho, S. H. Kim, J. H. Jeong, and T. G. Park. Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine) conjugate. Macromol. Biosci. 5:512–519 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. E. M. Kim, H. J. Jeong, I. K. Park, C. S. Cho, H. S. Bom, and C. G. Kim. Monitoring the effect of PEGylation on polyethylenimine in vivo using nuclear imaging technique. Nucl. Med. Biol. 31:781–784 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Y. H. Choi, F. Liu, J. S. Park, and S. W. Kim. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjug. Chem. 9:708–718 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. C. Kneuer, M. Sameti, E. G. Haltner, T. Schiestel, H. Schirra, H. Schmidt, and C. M. Lehr. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 196:257–261 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. Z. Li, S. Zhu, K. Gan, Q. Zhang, Z. Zeng, Y. Zhou, H. Liu, W. Xiong, X. Li, and G. Li. Poly-L-lysine-modified silica nanoparticles: a potential oral gene delivery system. J. Nanosci. Nanotechnol. 5:1199–1203 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. M. Sameti, G. Bohr, M. N. Ravi Kumar, C. Kneuer, U. Bakowsky, M. Nacken, H. Schmidt, and C. M. Lehr. Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int. J. Pharm. 266:51–60 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. D. Luoand, and W. M. Saltzman. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat. Biotechnol. 18:893–895 (2000).

    Article  CAS  Google Scholar 

  14. M. Thomasand and A. M. Klibanov. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 100:9138–9143 (2003).

    Article  CAS  Google Scholar 

  15. E. H. Chowdhury, M. Kunou, M. Nagaoka, A. K. Kundu, T. Hoshiba, and T. Akaike. High-efficiency gene delivery for expression in mammalian cells by nanoprecipitates of Ca–Mg phosphate. Gene 341:77–82 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. U. S. A. 102:11539–11544 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. D. Luo, E. Han, N. Belcheva, and W. M. Saltzman. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J. Control. Release 95:333–341 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. B. D. Mather, K. Viswanathan, K. M. Miller, and T. E. Long. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31:487–531 (2006).

    Article  CAS  Google Scholar 

  19. D. Jere, R. Arote, H. Jiang, J. W. Nah, M. H. Cho, and C. S. Cho. A poly(β-amino ester) of spermine and poly(ethylene glycol) diacrylate as a gene carrier. Key Eng. Mater. 342–343:425–428 (2007).

    Article  Google Scholar 

  20. T. H. Kim, S. E. Cook, R. Arote, M. H. Cho, J. W. Nah, Y. J. Choi, and C. S. Cho. A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier. Macromol. Biosci. 7:611–619 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. R. Arote, T. H. Kim, Y. K. Kim, S. K. Hwang, H. L. Jiang, H. H. Song, J. W. Nah, M. H. Cho, and C. S. Cho. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials 28:735–744 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. N. D. Sonawane, F. C. Szoka, Jr., and A. S. Verkman. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 278:44826–44831 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. M. R. Park, K. O. Han, I. K. Han, M. H. Cho, J. W. Nah, Y. J. Choi, and C. S. Cho. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J. Control. Release 105:367–380 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. D. G. Anderson, A. Akinc, N. Hossain, and R. Langer. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Molec. Ther. 11:426–434 (2005).

    Article  CAS  Google Scholar 

  25. F. Meng, G. H. Engbers, and J. Feijen. Polyethylene glycol-grafted polystyrene particles. J. Biomed. Mater. Res. A. 70:49–58 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. A. Akinc, D. G. Anderson, D. M. Lynn, and R. Langer. Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery. Bioconjug. Chem. 14:979–988 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by Korea Research Foundation (D00248). We also acknowledge National Instrumental Centre for Environmental Management for measurement of NMR and particle size. Mr. Dhananjay Jere is supported by Korea Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Su Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jere, D., Yoo, MK., Arote, R. et al. Poly (amino ester) Composed of Poly (ethylene glycol) and Aminosilane Prepared by Combinatorial Chemistry as a Gene Carrier. Pharm Res 25, 875–885 (2008). https://doi.org/10.1007/s11095-007-9448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9448-4

Key words

Navigation