Advertisement

Pharmaceutical Research

, Volume 25, Issue 4, pp 875–885 | Cite as

Poly (amino ester) Composed of Poly (ethylene glycol) and Aminosilane Prepared by Combinatorial Chemistry as a Gene Carrier

  • Dhananjay Jere
  • Mi-Kyong Yoo
  • Rohidas Arote
  • Tae-Hee Kim
  • Myung-Haing Cho
  • Jae-Woon Nah
  • Yun-Jaie Choi
  • Chong-Su Cho
Research Paper

Abstract

Purpose

Application of combinatorial chemistry and high throughput screening for the synthesis and evaluation of mini-library of novel biodegradable poly (β-amino ester)s (PAE)s composed of γ-aminopropyl-triethoxysilane (APES) and poly (ethylene glycol) diacrylate (PEGDA) for gene delivery efficiency and safety in 293T and HeLa cells in the presence of and absence of serum.

Materials and methods

PAEs were synthesized at different mole ratios of APES and PEGDA by Michael addition reaction and synthesis was confirmed by 1H nuclear magnetic resonance (1H-NMR). Ninety six ratios of polyplexes were evaluated for luciferase and MTS assay in 293T and HeLa cells in the presence of and absence of serum. Relationship between transfection efficiency and DNA binding ability of PAEs was studied by gel electrophoresis. Particle sizes and molecular weight of selected PAEs were measured by dynamic light scattering and gel permeation chromatography multi-angle light scattering, respectively.

Results

1H-NMR confirmed the synthesis of PAEs. In both cell lines, transfection efficiency and cell viability were increased for PAEs obtained from R106 (0.7:1, APES:PEGDA) to R121 (6:1, APES:PEGDA) with a marginal increase in APES concentration. Transfection pattern was uniform in the absence of and presence of serum. In both cell lines, PAE obtained from R121 demonstrated high transfection efficiency and low cytotoxicity as compared to polyethylenimine (25 KDa) and Lipofectamine. PAE obtained from R121 showed good DNA binding and condensation with average particle sizes of 133 nm.

Conclusion

Addition of PEGDA over APES resulted in a novel PAE which has high safety and transfection efficiency. Transfection and cytotoxicity are very sensitive to monomer ratios and mainly governed by concentration of amine monomer.

Key words

aminosilane combinatorial chemistry gene delivery non-viral vector  poly (β-amino ester) 

Abbreviations

AEAPMS

N-β-(aminoethyl)-γ-aminopropyl-trimethoxysilane

APES

γ-aminopropyl-triethoxysilane

DMEM

Dulbaco’s modified Eagles media

PAE

poly (β-amino ester)

PEGDA

poly (ethylene glycol) diacrylate

PEI 25K

high molecular weight polyethylenimine (25 KDa)

RLU/mg protein

Relative light units per milligram of protein

R106 to R121

reaction codes representing PAEs obtained from different mole ratios of APES and PEGDA

Notes

Acknowledgements

This work is funded by Korea Research Foundation (D00248). We also acknowledge National Instrumental Centre for Environmental Management for measurement of NMR and particle size. Mr. Dhananjay Jere is supported by Korea Research Foundation.

References

  1. 1.
    L. H. M.-C. H. E. Wagner. Nonviral Vectors for Gene Delivery, Academic Press, New York, 1999.Google Scholar
  2. 2.
    Y. Liu, D. Wu, Y. Ma, G. Tang, S. Wang, C. He, T. Chung, and S. Goh. Novel poly(amino ester)s obtained from Michael addition polymerizations of trifunctional amine monomers with diacrylates: safe and efficient DNA carriers. Chem. Commun. 2630–2631 (2003).Google Scholar
  3. 3.
    A. Akinc, D. M. Lynn, D. G. Anderson, and R. Langer. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J. Am. Chem. Soc. 125:5316–5323 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    J. H. Lee, Y. B. Lim, J. S. Choi, Y. Lee, T. I. Kim, H. J. Kim, J. K. Yoon, K. Kim, and J. S. Park. Polyplexes assembled with internally quaternized PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjug. Chem. 14:1214–1221 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4:581–593 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    K. C. Cho, S. H. Kim, J. H. Jeong, and T. G. Park. Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine) conjugate. Macromol. Biosci. 5:512–519 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    E. M. Kim, H. J. Jeong, I. K. Park, C. S. Cho, H. S. Bom, and C. G. Kim. Monitoring the effect of PEGylation on polyethylenimine in vivo using nuclear imaging technique. Nucl. Med. Biol. 31:781–784 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. H. Choi, F. Liu, J. S. Park, and S. W. Kim. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjug. Chem. 9:708–718 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Kneuer, M. Sameti, E. G. Haltner, T. Schiestel, H. Schirra, H. Schmidt, and C. M. Lehr. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 196:257–261 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    Z. Li, S. Zhu, K. Gan, Q. Zhang, Z. Zeng, Y. Zhou, H. Liu, W. Xiong, X. Li, and G. Li. Poly-L-lysine-modified silica nanoparticles: a potential oral gene delivery system. J. Nanosci. Nanotechnol. 5:1199–1203 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Sameti, G. Bohr, M. N. Ravi Kumar, C. Kneuer, U. Bakowsky, M. Nacken, H. Schmidt, and C. M. Lehr. Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int. J. Pharm. 266:51–60 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Luoand, and W. M. Saltzman. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat. Biotechnol. 18:893–895 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Thomasand and A. M. Klibanov. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 100:9138–9143 (2003).CrossRefGoogle Scholar
  15. 15.
    E. H. Chowdhury, M. Kunou, M. Nagaoka, A. K. Kundu, T. Hoshiba, and T. Akaike. High-efficiency gene delivery for expression in mammalian cells by nanoprecipitates of Ca–Mg phosphate. Gene 341:77–82 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. U. S. A. 102:11539–11544 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Luo, E. Han, N. Belcheva, and W. M. Saltzman. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J. Control. Release 95:333–341 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    B. D. Mather, K. Viswanathan, K. M. Miller, and T. E. Long. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31:487–531 (2006).CrossRefGoogle Scholar
  19. 19.
    D. Jere, R. Arote, H. Jiang, J. W. Nah, M. H. Cho, and C. S. Cho. A poly(β-amino ester) of spermine and poly(ethylene glycol) diacrylate as a gene carrier. Key Eng. Mater. 342–343:425–428 (2007).CrossRefGoogle Scholar
  20. 20.
    T. H. Kim, S. E. Cook, R. Arote, M. H. Cho, J. W. Nah, Y. J. Choi, and C. S. Cho. A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier. Macromol. Biosci. 7:611–619 (2007).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Arote, T. H. Kim, Y. K. Kim, S. K. Hwang, H. L. Jiang, H. H. Song, J. W. Nah, M. H. Cho, and C. S. Cho. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials 28:735–744 (2007).PubMedCrossRefGoogle Scholar
  22. 22.
    N. D. Sonawane, F. C. Szoka, Jr., and A. S. Verkman. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 278:44826–44831 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    M. R. Park, K. O. Han, I. K. Han, M. H. Cho, J. W. Nah, Y. J. Choi, and C. S. Cho. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J. Control. Release 105:367–380 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    D. G. Anderson, A. Akinc, N. Hossain, and R. Langer. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Molec. Ther. 11:426–434 (2005).CrossRefGoogle Scholar
  25. 25.
    F. Meng, G. H. Engbers, and J. Feijen. Polyethylene glycol-grafted polystyrene particles. J. Biomed. Mater. Res. A. 70:49–58 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Akinc, D. G. Anderson, D. M. Lynn, and R. Langer. Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery. Bioconjug. Chem. 14:979–988 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Dhananjay Jere
    • 1
  • Mi-Kyong Yoo
    • 1
  • Rohidas Arote
    • 1
  • Tae-Hee Kim
    • 1
  • Myung-Haing Cho
    • 2
  • Jae-Woon Nah
    • 3
  • Yun-Jaie Choi
    • 1
  • Chong-Su Cho
    • 1
  1. 1.School of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
  2. 2.College of Veterinary SciencesSeoul National UniversitySeoulSouth Korea
  3. 3.Department of Polymer Science and EngneeringSunchon National UniversitySunchonSouth Korea

Personalised recommendations