Skip to main content
Log in

Predicting the Solubility of the Anti-Cancer Agent Docetaxel in Small Molecule Excipients using Computational Methods

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop an in silico model that provides an accurate prediction of the relative solubility of the lipophilic anticancer agent docetaxel in various excipients.

Materials and Methods

The in silico solubility of docetaxel in the excipients was estimated by means of the solubility (δ) and Flory-Huggins interaction (χ FH) parameters. The δ values of docetaxel and excipients were calculated using semi-empirical methods and molecular dynamics (MD) simulations. Cerius2 software and COMPASS force-field were employed for the MD simulations. The χ FH values for the binary mixtures of docetaxel and excipient were also estimated by MD simulations.

Results

The values obtained from the MD simulations for the solubility of docetaxel in the various excipients were in good agreement with the experimentally determined values. The simulated values for solubility of docetaxel in tributyrin, tricaproin and vitamin E were within 2 to 6% of the experimental values. MD simulations predicted docetaxel to be insoluble in β-caryophyllene and this result correlated well with experimental studies.

Conclusions

The MD model proved to be a reliable tool for selecting suitable excipients for the solubilization of docetaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. W. Yi, Y.-H. Kim, I. C. Kwon, J. W. Chung, J. H. Park, Y. W. Choi, and S. Y. Jeong. Stable Lipiodolized emulsions for hepatoma targeting and treatment by transarterial chemoembolization. J. Control. Release 50:135–143 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. I.-H. Lee, Y. T. Park, K. Roh, H. Chung, I. C. Kwon, and S. Y. Jeong. Stable paclitaxel formulations in oily contrast medium. J. Control. Release 102:415–425 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. R. G. Strickley. Solubilizing Excipients in Oral and Injectable Formulations. Pharm. Res. 21:201–230 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. M. N. Khalid, P. Simard, D. Hoarau, A. Dragomir, and J.-C. Leroux. Long circulating poly(ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors. Pharm. Res. 23:752–758 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. P. Kan, Z.-B. Chen, C.-J. Lee, and I.-M. Chu. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J. Control. Release 58:271–278 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. J. G. Wenzel, K. S. Balaji, K. Koushik, C. Navarre, S. H. Duran, C. H. Rahe, and U. B. Kompella. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Release 85:51–59 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25 (1997).

    Article  CAS  Google Scholar 

  8. M. E. Aulton. Pharmaceutics: The Science of Dosage Form Design 2nd ed.; Elsevier Science Limited: Churchill Livingstone, 2002.

  9. M. Kreilgaard. Influence of microemulsions on cutaneous drug delivery. Adv. Drug Deliv. Rev. 54:S77–S98 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. N. S. Bhattachar, L. A. Deschenes, and J. A. Wesley. Solubility: it's not just for physical chemists. Drug Discov. Today 11:1012–1018 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. B. E. Eichinger, D. Rigby, and J. Stein. Cohesive properties of Ultem and related molecules from simulations. Polymer 43:599–607 (2002).

    Article  CAS  Google Scholar 

  12. S. S. Patnaik, and R. Pachter. A molecular simulations study of the miscibility in binary mixtures of polymers and low molecular weight molecules. Polymer 43:415–424 (2002).

    Article  CAS  Google Scholar 

  13. J. Ennari, L.-O. Pietilä, V. Virkkunen, and F. Sundholm. Molecular dynamics simulation of the structure of an ion-conducting PEO-based solid polymer electrolyte. Polymer 43:5427–5438 (2002).

    Article  CAS  Google Scholar 

  14. T. Li, D. O. Kildsig, and K. Park. Computer simulation of molecular diffusion in amorphous polymers. J. Control. Release 48:57–66 (1997).

    Article  CAS  Google Scholar 

  15. J. H. Poupaert, and P. Couvreur. A computationally derived structural model of doxorubicin interacting with oligomeric polyalkylcyanoacrylate in nanoparticles. J. Control. Release 92:19–26 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. T. Spyriouni, and C. Vergelati. A molecular modeling study of binary blend compatibility of polyamide 6 and poly(vinyl acetate) with different degrees of hydrolysis: an atomistic and mesoscopic approach. Macromolecules 34:5306–5316 (2001).

    Article  CAS  Google Scholar 

  17. M. Zhang, P. Choi, and U. Sundararaj. Molecular dynamics and thermal analysis study of anomalous thermodynamic behavior of poly (etherimide)/polycarbonate blends. Polymer 44:1979–1986 (2003).

    Article  CAS  Google Scholar 

  18. S. H. Jacobson. Molecular modeling studies of polymeric transdermal adhesives: structure and transport mechanisms. Pharmaceutical Technology 23:122–130 (1999).

    Google Scholar 

  19. Y.-M. Lam, G. Goldbeck-Wood, and C. Boothroyd. Mesoscale Simulation and cryo-TEM of Nanoscale Drug Delivery Systems. Molecular Simulation 30:239–247 (2004).

    Article  CAS  Google Scholar 

  20. G. Srinivas, D. E. Discher, and M. L. Klein. Self-assembly and properties of diblock copolymers by coarse grain molecular dynamics. Nature Materials 3:638–644 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. G. Srinivas, and M. L. Klein. Coarse-grain molecular dynamics simulations of diblock copolymer surfactants interacting with a lipid bilayer. Molec. Phys. 102:883–889 (2004).

    Article  CAS  Google Scholar 

  22. D. Pavel, and J. Lagowski. Computationally designed monomers and polymers for molecular imprinting of theophylline and its derivatives. Polymer 46:7528–7542 (2005).

    Article  CAS  Google Scholar 

  23. O. Pradier, M. Rave-Fränk, J. Lehmann, E. Lücke, O. Boghun, C.-F. Hess, and H. Schmidberger. Effects of docetaxel in combination with radiation on human head and neck cancer cells (ZMK-1) and cervical squamous cell carcinoma cells (CASKI). Int. J. Cancer 91:840–845 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. J. E. Cortes, and R. Pazdur. Docetaxel. J. Clin. Oncol. 13:2643–2655 (1995).

    PubMed  CAS  Google Scholar 

  25. E. K. Rowinsky, and R. C. Donehower. Drug therapy: paclitaxel (Taxol). N. Engl. J. Med. 332:1004–1014 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. U.S. Food and Drug Administration, date of access: May 2007, http://www.fda.gov/bbs/topics/news/2004/NEW01068.html.

  27. U.S. Food and Drug Administration, date of access: May 2007, http://www.fda.gov/bbs/topics/NEWS/2006/NEW01493.html.

  28. U.S. Food and Drug Administration, date of access: May 2007, http://www.fda.gov/bbs/topics/ANSWERS/2001/ANS01101.html.

  29. U.S. Food and Drug Administration, date of access: May 2007, http://www.fda.gov/cder/rdmt/internetftap.htm.

  30. U.S. Food and Drug Administration, date of access: May 2007, http://www.cancer.gov/cancertopics/druginfo/fda-docetaxel.

  31. J. H. Hildebrand, and R. L. Scott. The Solubility of Nonelectrolytes, 3rd ed., Reinhold Publishing Corporation, New York, 1950.

    Google Scholar 

  32. W. Blokzij, and J. B. F. N. Engberts. Hydrophobic effects. Opinions and facts. Angew. Chem. Int. Ed. Engl. 32:1545–1579 (1993).

    Article  Google Scholar 

  33. M. H. Abraham. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22:73–83 (1993).

    Article  CAS  Google Scholar 

  34. R. F. Fedors. A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 14:147–154 (1974).

    Article  CAS  Google Scholar 

  35. E. Ruckenstein, and I. Shulgin. Solubility of drugs in aqueous solutions. Part 1. Ideal mixed solvent approximation. Int. J. Pharm. 258:193–201 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Accelrys Software Inc., Cerius2 Simulation & Prediction, Release 4.6, San Diego: Accelrys Software Inc., 2001.

  37. T. Higuchi, and K. A. Connors. Phase-solubility techniques. Advan. Anal. Chem. Instr. 4:117–212 (1965).

    CAS  Google Scholar 

  38. H. van der Waterbeemd, H. Lennernäs, P. Artursson. Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability. Wiley VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, Chapters 1 and 6.

  39. M. M. A. Omari, M. B. Zughul, J. E. D. Davies, and A. A. Badwan. Thermodynamic enthalpy–entropy compensation effects observed in the complexation of basic drug substrates with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 57:379–384 (2007).

    Article  Google Scholar 

  40. K. G. H. Desain, and H. J. Park. Solubility studies on valdecoxib in the presence of carriers, cosolvents, and surfactants. Drug Dev. Res. 62:41–48 (2004).

    Article  Google Scholar 

  41. R. Singh, M. Ajagbe, S. Bhamidipati, Z. Ahmad, and I. Ahmad. A rapid isocratic high-performance liquid chromatography method for determination of cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphocholine in liposome-based drug formulations. J. Chromatogr. A 1073:347–353 (2005).

    Article  CAS  Google Scholar 

  42. B. Vaisman, A. Shikanov, A. J. Domb. Normal phase high performance liquid chromatography for determination of paclitaxel incorporated in a lipophilic polymer matrix. J. Chromatogr. A 1064:85–95 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. S. K. Tahir, M. A. Nukkala, N. A. Z. Mozny, R. B. Credo, R. B. Warner, Q. Li, K. W. Woods, A. Claiborne, S. L. Gwaltney, D. J. Frost, H. L. Sham, S. H. Rosenberg, and S.-C. Ng. Biological activity of A-289099: an orally active tubulin-binding indolyloxazoline derivative. Mol. Cancer Ther. 2:227–233 (2003).

    PubMed  CAS  Google Scholar 

  44. D. W. van Krevelen. Properties of Polymers. 3rd ed.; Elsevier Scientific Pub. Co.: New York, 1990.

  45. M. Waldman, and A. T. Hagler. New combining rules for rare gas van der waals parameters. J. Comput. Chem. 14:1077–1084 (1993).

    Article  CAS  Google Scholar 

  46. P. Gestoso, and J. Brisson. Towards the simulation of poly(vinyl phenol)/poly(vinyl methyl ether) blends by atomistic molecular modelling. Polymer 44:2321–2329 (2003).

    Article  CAS  Google Scholar 

  47. J. A. Mason, and L. H. Sperling. Polymer Blends and Composites; Plenum Press: New York, 1976.

    Google Scholar 

  48. J. A. McCammon. Dynamics of Proteins and Nucleic Acids; Press Syndicated of the University of Cambridge: New York, 1989; pp. 60–65.

    Google Scholar 

  49. M. P. Allen, and D. J. Tildesley. Computer Simulation of Liquids; Claredon Press Oxford, 1987.

    Google Scholar 

  50. H. Sun. COMPASS: An ab Initio Force Field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J. Phys. Chem. B 102:7338–7364 (1998).

    Article  CAS  Google Scholar 

  51. D. Rigby, H. Sun, and B. E. Eichinger. Computer simulations of poly(ethylene oxide): force field, PVT diagram and cyclization behavior. Polym. Inter. 44:311–330 (1997).

    Article  CAS  Google Scholar 

  52. M. J. Hwang, T. P. Stockfisch, and A. T. Hagler. Derivation of class II force fields. 2. Derivation and characterization of a class II force field, CFF93, for the alkyl functional group and alkane molecules. J. Am. Chem. Soc. 116:2515–2525 (1994).

    Article  CAS  Google Scholar 

  53. J. M. G. Cowie. Polymers: Chemistry and Physics of Modern Materials, 2nd ed.; Nelson Thornes Ltd.: Cheltenham, 1991, Chapter 8.

    Google Scholar 

  54. C. F. Fan, B. D. Olafson, and M. Blanco. Application of molecular simulation to derive phase diagrams of binary mixtures. Macromolecules 25:3667–3676 (1992).

    Article  CAS  Google Scholar 

  55. F. H. Case, and J. D. Honeycutt. Will my polymers mix? - Applications for modeling to study miscibility, compatibility and formulation. TRIP 2:256 (1994).

    Google Scholar 

  56. P. J. Flory. Principles of Polymer Chemistry; Cornell University Press: Ithaca, New York, 1953.

  57. D. Merino-Garcia, and S. Correra. A shortcut application of a Flory-like model to asphaltene precipitation. J. Dispersion Sci. Technol. 28:339–347 (2007).

    Article  CAS  Google Scholar 

  58. P. Bahadur, and N. V. Sastry. Principles of Polymer Science, 2nd ed.; Alpha Science International Ltd.: Oxford, UK, 2005, Chapter 8.

    Google Scholar 

  59. H. Elbs, and G. Krausch. Ellipsometric determination of Flory-Huggins interaction parameters in solution. Polymer 45:7935–7942 (2004).

    Article  CAS  Google Scholar 

  60. Polymer Data Handbook, Oxford University Press, Inc., 1999.

  61. M. R. Paillasse, C. Deraeve, P. de Medina, L. Mhamdi, G. Favre, M. Poirot, S. Silvente-Poirot. Insights into the cholecystokinin 2 receptor binding site and processes of activation. Mol. Pharmacol. 70:1935–1945 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. S. Nosé. Constant temperature molecular dynamics methods. Prog. Theoret. Phys. Supplement 103:1–46 (1991).

    Article  Google Scholar 

  63. S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Molec. Phys. 52:255–268 (1984).

    Article  Google Scholar 

  64. D. Orloff, date of access: May 2007, http://www.fda.gov/cder/foi/label/2002/18920s024lbl.pdf.

  65. U.S. Food and Drug Administration, date of access: May 2007, http://www.fda.gov/cder/foi/label/2004/21671_depoDur_lbl.pdf.

  66. U.S. Food and Drug Administration, date of access: May 2007, http://www.fda.gov/cder/da/da0900.htm.

  67. U.S. Food and Drug Administration, date of access: May 2007, http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.515.

  68. U.S. Food and Drug Administration, date of access: May 2007, http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1903.

  69. U.S. Food and Drug Administration, date of access: May 2007, http://www.fda.gov/cder/da/ddpa296.htm.

  70. D. Mastropaolo, A. Camerman, Y. Lou, G. D. Brayer, and N. Camerman. Crystal and molecular structure of paclitaxel (Taxol). Proc. Natl. Acad. Sci. 92:6920–6924 (1995).

    Article  PubMed  CAS  Google Scholar 

  71. R. T. Liggins, W. L. Hunter, and H. M. Burt. Solid-state characterization of paclitaxel. J. Pharm. Sci. 86:1458–1463 (1997).

    Article  PubMed  CAS  Google Scholar 

  72. L. Zhao, and S.-S. Feng. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. J. Colloid Interface Sci. 274:55–68 (2004).

    Article  PubMed  CAS  Google Scholar 

  73. J. H. Yin, Y. Noda, N. Hazemoto, and T. Yotsuyanagi. Distribution of protease inhibitors in lipid emulsions: gabexate mesilate and camostat mesilate. Chem. Pharm. Bull. 53:893–898 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. D. J. Greenhalgh, A. C. Williams, P. Timmins, and P. York. Solubility parameters as predictor of miscibility in solid dispersions. J. Pharm. Sci. 88:1182–1190 (1999).

    Article  PubMed  CAS  Google Scholar 

  75. T. V. M. Sreekanth, and K. S. Reddy. Analysis of solvent-solvent interactions in mixed isosteric solvents by inverse gas chromatography. Chromatographia 65:325–330 (2007).

    Article  CAS  Google Scholar 

  76. J. de Wit, G. A. van Ekenstein, and G. ten Brinke. Interaction between poly(vinyl pyridine) and poly(2,6-dimethyl-1,4-phenylene oxide): A copolymer blend miscibility study. Polymer 48:1606–1611 (2007).

    Article  Google Scholar 

  77. G. O. R. A. van Ekenstein, R. Meyboom, and G. ten Brinke. Determination of the Flory-Huggins interaction parameter of styrene and 4-vinylpyridine using copolymer blends of poly(styrene-co-4-vinylpyridine) and polystyrene. Macromolecules 33:3752–3756 (2000).

    Article  Google Scholar 

  78. S. M. Ali, M. Z. Hoemann, J. Aubé, L. A. Mitscher, G. I. Georg, R. McCall, and L. R. Jayasinghe. Novel cytotoxic 3'-(tert-butyl) 3'-dephenyl analogs of paclitaxel and docetaxel. J. Med. Chem. 38:3821–3828 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Natural Sciences and Engineering Research Council (NSERC) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Allen.

Electronic supplementary material

Below is the linked to the electronic supplementary material

ESM 1

(DOC 78.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, L., Grant, J., Leroux, JC. et al. Predicting the Solubility of the Anti-Cancer Agent Docetaxel in Small Molecule Excipients using Computational Methods. Pharm Res 25, 147–157 (2008). https://doi.org/10.1007/s11095-007-9412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9412-3

Key words

Navigation