Pharmaceutical Research

, Volume 25, Issue 3, pp 512–520 | Cite as

Drug Elimination Kinetics Following Subconjunctival Injection Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

  • Stephanie H. Kim
  • Karl G. Csaky
  • Nam Sun Wang
  • Robert J. Lutz
Research Paper



To determine the elimination rates of subconjunctivally injected model drugs using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).


Gadolinium-diethylenetriaminopentaacetic acid (Gd-DTPA) and gadolinium-albumin (Gd-albumin) were injected in rabbits. Experiments were performed in vivo and post mortem and injection volumes of 200 and 600 μl were administered. Signal intensity values from MR images were converted to concentration of contrast agent to determine the mass clearance rates from subconjunctival space.


Injection volume did not have a significant effect on clearance rate for both Gd-DTPA and Gd-albumin. The clearance rate of Gd-DTPA in vivo was about nine times faster than that post mortem. The in vivo and post mortem clearance rates of Gd-albumin were not significantly different. The in vivo half-life of Gd-DTPA was about 22 min while that of Gd-albumin was about 5.3 h.


DCE-MRI was used to quantitatively compare the subconjunctival clearance rates of Gd-DTPA and Gd-albumin. Dynamic clearance mechanisms present in vivo significantly reduced the subconjunctival concentration of Gd-DTPA but not Gd-albumin. Lymphatic clearance does not seem to be as significant as clearance by blood, as evidenced by data from Gd-albumin injections. Larger injection volumes may allow for longer retention times and prolonged release of drug.

Key words

drug transport barrier magnetic resonance imaging ocular pharmacokinetics subconjunctival injection transscleral drug delivery 



The authors thank Dr. Robert L. Dedrick for insightful discussion and Dr. Craig J. Galban for assistance with image analysis. Veterinary technical expertise provided by Mark Lawson and Denise Parker is also gratefully acknowledged.


  1. 1.
    P. A. Gaudio. A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul. Immunol. Inflamm. 12:169–192 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    R. J. Morris, D. McLeod, and Z. J. Gregor. Subconjunctival injections of antibiotics are used increasingly at the conclusion of intraocular and extraocular procedures. Eye 3(Pt 6):860–861 (1989).PubMedGoogle Scholar
  3. 3.
    H. J. McCartney, I. O. Drysdale, A. G. Gornall, and P. K. Basu. An autoradiographic study of the penetration of subconjunctivally injected hydrocortisone into the normal and inflamed rabbit eye. Invest. Ophthalmol. 4:297–302 (1965).PubMedGoogle Scholar
  4. 4.
    O. Weijtens, E. J. Feron, R. C. Schoemaker, A. F. Cohen, E. G. Lentjes, F. P. Romijn, and J. C. van Meurs. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am. J. Ophthalmol. 128:192–197 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Barza, A. Kane, and J. L. Baum. Regional differences in ocular concentration of gentamicin after subconjunctival and retrobulbar injection in the rabbit. Am. J. Ophthalmol. 83:407–413 (1977).PubMedGoogle Scholar
  6. 6.
    A. Tsuji, I. Tamai, and K. Sasaki. Intraocular penetration kinetics of prednisolone after subconjunctival injection in rabbits. Ophthalmic Res. 20:31–43 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    T. W. Kim, J. D. Lindsey, M. Aihara, T. L. Anthony, and R. N. Weinreb. Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. Invest. Ophthalmol. Vis. Sci. 43:1809–1816 (2002).PubMedGoogle Scholar
  8. 8.
    P. H. Kalina, J. C. Erie, and L. Rosenbaum. Biochemical quantification of triamcinolone in subconjunctival depots. Arch. Ophthalmol. 113:867–869 (1995).PubMedGoogle Scholar
  9. 9.
    D. M. Maurice, and Y. Ota. The kinetics of subconjunctival injections. Jpn. J. Ophthalmol. 22:95–100 (1978).Google Scholar
  10. 10.
    S. K. Li, S. A. Molokhia, and E. K. Jeong. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging. Pharm. Res. 21:2175–2184 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Reisfeld, S. Blackband, V. Calhoun, S. Grossman, S. Eller, and K. Leong. The use of magnetic resonance imaging to track controlled drug release and transport in the brain. Magn. Reson. Imaging. 11:247–252 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    B. A. Berkowitz, Y. Sato, C. A. Wilson, and E. de Juan. Blood–retinal barrier breakdown investigated by real-time magnetic resonance imaging after gadolinium-diethylenetriaminepentaacetic acid injection. Invest. Ophthalmol. Vis. Sci. 32:2854–2860 (1991).PubMedGoogle Scholar
  13. 13.
    E. L. Arrindell, J. C. Wu, M. D. Wolf, S. Nanda, D. P. Han, E. C. Wong, G. W. Abrams, W. F. Mieler, and J. S. Hyde. High-resolution magnetic resonance imaging evaluation of blood–retinal barrier integrity following transscleral diode laser treatment. Arch. Ophthalmol. 113:96–102 (1995).PubMedGoogle Scholar
  14. 14.
    B. A. Berkowitz, R. Roberts, H. Luan, J. Peysakhov, X. Mao, and K. A. Thomas. Dynamic contrast-enhanced MRI measurements of passive permeability through blood retinal barrier in diabetic rats. Invest. Ophthalmol. Vis. Sci. 45:2391–2398 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    W. E. Plehwe, D. W. McRobbie, R. A. Lerski, and E. M. Kohner. Quantitative magnetic resonance imaging in assessment of the blood–retinal barrier. Invest. Ophthalmol. Vis. Sci. 29:663–670 (1988).PubMedGoogle Scholar
  16. 16.
    H. Kim, M. R. Robinson, M. J. Lizak, G. Tansey, R. J. Lutz, P. Yuan, N. S. Wang, and K. G. Csaky. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 45:2722–2731 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    S. H. Kim, C. J. Galban, R. J. Lutz, R. L. Dedrick, K. G. Csaky, M. J. Lizak, N. S. Wang, G. Tansey, and M. R. Robinson. Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 48:808–814 (2007).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Kim, M. J. Lizak, G. Tansey, K. G. Csaky, M. R. Robinson, P. Yuan, N. S. Wang, and R. J. Lutz. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann. Biomed. Eng. 33:150–164 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    M. R. Robinson, S. S. Lee, H. Kim, S. Kim, R. J. Lutz, C. Galban, P. M. Bungay, P. Yuan, N. S. Wang, J. Kim, and K. G. Csaky. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp. Eye Res. 82:479–487 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Supersaxo, W. R. Hein, and H. Steffen. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm. Res. 7:167–169 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    A. C. Amrite, and U. B. Kompella. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J. Pharm. Pharmacol. 57:1555–1563 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    D. N. McLennan, C. J. H. Porter, and S. A. Charman. Subcutaneous drug delivery and the role of the lymphatics. Drug Discovery Today: Technologies. 2:89 (2005).CrossRefGoogle Scholar
  23. 23.
    L. D. Samuels. Lymphoscintigraphy. Lymphology. 20:4–9 (1987).PubMedGoogle Scholar
  24. 24.
    M. K. Nawaz, M. M. Hamad, H. M. Abdel-Dayem, S. Sadek, and B. G. Eklof. Tc-99m human serum albumin lymphoscintigraphy in lymphedema of the lower extremities. Clin. Nucl. Med. 15:794–799 (1990).PubMedCrossRefGoogle Scholar
  25. 25.
    S. J. Pain, R. S. Nicholas, R. W. Barber, J. R. Ballinger, A. D. Purushotham, P. S. Mortimer, and A. M. Peters. Quantification of lymphatic function for investigation of lymphedema: depot clearance and rate of appearance of soluble macromolecules in blood. J. Nucl. Med. 43:318–324 (2002).PubMedGoogle Scholar
  26. 26.
    G. F. Warner, E. L. Dobson, N. Pace, M. E. Johnston, and C. R. Finney. Studies of human peripheral blood flow; the effect of injection volume on the intramuscular radiosodium clearance rate. Circulation. 8:732–734 (1953).PubMedGoogle Scholar
  27. 27.
    R. B. Sund, and J. Schou. The determination of absorption rates from rat muscles: An experimental approach to kinetic descriptions. Acta Pharm. Toxicol. (Copenh). 21:313–325 (1964).Google Scholar
  28. 28.
    J. Blaser, H. L. Rieder, and R. Luthy. Interface-area-to-volume ratio of interstitial fluid in humans determined by pharmacokinetic analysis of netilmicin in small and large skin blisters. Antimicrob. Agents. Chemother. 35:837–839 (1991).PubMedGoogle Scholar
  29. 29.
    K. Hirano, T. Ichihashi, and H. Yamada. Studies on the absorption of practically water-insoluble drugs following injection V: Subcutaneous absorption in rats from solutions in water immiscible oils. J. Pharm. Sci. 71:495–500 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    A. J. Fischman, N. M. Alpert, J. W. Babich, and R. H. Rubin. The role of positron emission tomography in pharmacokinetic analysis. Drug Metab. Rev. 29:923–956 (1997).PubMedCrossRefGoogle Scholar
  31. 31.
    S. R. Cherry. Fundamentals of positron emission tomography and applications in preclinical drug development. J. Clin. Pharmacol. 41:482–491 (2001).PubMedCrossRefGoogle Scholar
  32. 32.
    O. Langer, and M. Muller. Methods to assess tissue-specific distribution and metabolism of drugs. Curr. Drug Metab. 5:463–481 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    R. Hustinx, S. L. Eck, and A. Alavi. Potential applications of PET imaging in developing novel cancer therapies. J. Nucl. Med. 40:995–1002 (1999).PubMedGoogle Scholar
  34. 34.
    M. Dolovich, and R. Labiris. Imaging drug delivery and drug responses in the lung. Proc. Am. Thorac. Soc. 1:329–337 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stephanie H. Kim
    • 1
    • 2
  • Karl G. Csaky
    • 3
  • Nam Sun Wang
    • 1
  • Robert J. Lutz
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaUSA
  3. 3.National Eye Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations