Skip to main content

Advertisement

Log in

Targeted Delivery of Complexes of Biotin–PEG–Polyethylenimine and NF-κB Decoys to Brain-derived Endothelial Cells in Vitro

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect of re-directing the uptake mechanism of polyplexes containing oligodeoxynucleotide (ODN) decoys to nuclear factor kappa B (NF-κB) from absorptive-mediated to receptor-mediated endocytosis.

Materials and Methods

Complexes of ODNs and a co-polymer of biotin–polyethylenglycol and polyethylenimine (BPP) were targeted to brain-derived endothelial cells with a conjugate of antibody 8D3 and streptavidin (8D3SA). Size and stability of ODN/BPP complexes was measured by dynamic light scattering. Cellular uptake was studied by confocal microscopy. Cell viability and pharmacological effects were investigated on murine bEnd5 cells stimulated with tumor necrosis factor.

Results

ODN/BPP complexes showed sizes of 116 ± 2.3 nm, which increased by 40 nm when coupled to 8D3SA, and were stable in physiological fluids. Targeted complexes were internalized intact into endosomal compartments. Treatment conditions, which yielded significant inhibitory effects on mRNA expression of VCAM-1, ICAM-1, IκBα and iNOS by bEnd5 cells, did not affect viability. At 0.5 μM, decoy ODN significantly inhibited monocyte adhesion to bEnd5 monolayers when delivered as 8D3SA-targeted complex, while higher concentrations of untargeted complex were ineffective.

Conclusions

The complex of NF-κB decoys and BPP, which can be targeted to transferrin receptors, is a promising drug candidate for neuroinflammatory diseases affecting the blood–brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BBB:

blood–brain barrier

BCECF-AM:

2′,7′-bis-(carboxyethyl)-5-(6)-carboxyfluorescein-acetoxymethyl ester

BPP:

biotin–polyethylenglycol–polyethylenimine

ICAM-1:

intercellular adhesion molecule 1

LMW-PEI:

low molecular weight polyethylenimine

NF-κB:

nuclear factor kappaB

ODN:

oligodeoxynucleotide

PEG:

poly (ethylene glycol)

PEI:

polyethylenimine

SA:

streptavidin

S-SMPB:

sulfosuccinimidyl 4-[p-maleimidophenyl]butyrate

VCAM-1:

vascular cell adhesion molecule 1

8D3SA:

8D3-streptavidin

References

  1. M. J. Mann. Transcription factor decoys: a new model for disease intervention. Ann. N. Y. Acad. Sci. 1058:128–139 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. D. Fischer, R. Bhattacharya, B. Osburg, and U. Bickel. Inhibition of monocyte adhesion on brain-derived endothelial cells by NF-kappaB decoy/polyethylenimine complexes. J. Gene Med. 7:1063–1076 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. L. Steinman. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat. Rev. Drug Discov. 4:510–518 (2005).

    Article  CAS  Google Scholar 

  4. T. A. Yednock, C. Cannon, L. C. Fritz, F. Sanchez-Madrid, L. Steinman, and N. Karin. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. D. H. Miller, O. A. Khan, W. A. Sheremata, L. D. Blumhardt, G. P. Rice, M. A. Libonati, A. J. Willmer-Hulme, C. M. Dalton, K. A. Miszkiel, and P. W. O’Connor. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348:15–23 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. D. Fischer, B. Osburg, H. Petersen, T. Kissel, and U. Bickel. Effect of poly(ethylene imine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice. Drug Metab. Dispos. 32:983–992 (2004).

    PubMed  CAS  Google Scholar 

  7. U. Bickel, T. Yoshikawa, and W. M. Pardridge. Delivery of peptides and proteins through the blood–brain barrier. Adv. Drug Deliv. Rev. 46:247–279 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. W. M. Pardridge. Blood–brain barrier drug targeting: the future of brain drug development. Mol. Interv. 3:90–105, 151 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. H. J. Lee, B. Engelhardt, J. Lesley, U. Bickel, and W. M. Pardridge. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood–brain barrier in mouse. J. Pharmacol. Exp. Ther. 292:1048–1052 (2000).

    PubMed  CAS  Google Scholar 

  10. H. J. Lee, Y. Zhang, C. Zhu, K. Duff, and W. M. Pardridge. Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Abeta peptide radiopharmaceutical. J. Cereb. Blood Flow Metab. 22:223–231 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. N. Shi, Y. Zhang, C. Zhu, R. J. Boado, and W. M. Pardridge. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci. U. S. A. 98:12754–12759 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Y. Zhang and W. M. Pardridge. Delivery of beta-galactosidase to mouse brain via the blood–brain barrier transferrin receptor. J. Pharmacol. Exp. Ther. 313:1075–1081 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. H. J. Lee, R. J. Boado, D. A. Braasch, D. R. Corey, and W. M. Pardridge. Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington’s disease with an antisense radiopharmaceutical and drug-targeting technology. J. Nucl. Med. 43:948–956 (2002).

    PubMed  CAS  Google Scholar 

  14. D. Fischer, T. Bieber, Y. Li, H. P. Elsasser, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273–1279 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. M. Laschinger and B. Engelhardt. Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J. Neuroimmunol. 102:32–43 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. A. von Harpe, H. Petersen, Y. Li, and T. Kissel. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release 69:309–322 (2000).

    Article  Google Scholar 

  17. B. Osburg. Drug delivery of Oligonucleotides at the BloodBrain Barrier: A Therapeutic Strategy for Inflammatory Diseases of the Central Nervous System, Physiology, Philipps-University, Marburg, 2003, pp. 1–121.

    Google Scholar 

  18. M. I. Cybulsky, M. Allan-Motamed, and T. Collins. Structure of the murine VCAM1 gene. Genomics 18:387–391 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. R. K. Rohnelt, G. Hoch, Y. Reiss, and B. Engelhardt. Immunosurveillance modelled in vitro: naive and memory T cells spontaneously migrate across unstimulated microvascular endothelium. Int. Immunol. 9:435–450 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. K. Kunath, A. von Harpe, D. Fischer, H. Petersen, U. Bickel, K. Voigt, and T. Kissel. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 89:113–125 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. M. Ogris, P. Steinlein, M. Kursa, K. Mechtler, R. Kircheis, and E. Wagner. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 5:1425–1433 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. D. Goula, J. S. Remy, P. Erbacher, M. Wasowicz, G. Levi, B. Abdallah, and B. A. Demeneix. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther. 5:712–717 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. L. Wightman, R. Kircheis, V. Rossler, S. Carotta, R. Ruzicka, M. Kursa, and E. Wagner. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3:362–372 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. W. T. Godbey, K. K. Wu, and A. G. Mikos. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. U. S. A. 96:5177–5181 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. T. Merdan, K. Kunath, D. Fischer, J. Kopecek, and T. Kissel. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharm. Res. 19:140–146 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. T. Merdan, J. Kopecek, and T. Kissel. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54:715–758 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. R. Kircheis, L. Wightman, and E. Wagner. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev. 53:341–358 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. M. Ogris, P. Steinlein, S. Carotta, S. Brunner, and E. Wagner. DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci. 3:E21 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. O. Germershaus, T. Merdan, U. Bakowsky, M. Behe, and T. Kissel. Trastuzumab-polyethylenimine-polyethylene glycol conjugates for targeting her2-expressing tumors. Bioconjug. Chem. 17:1190–1199 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. A. Kichler. Gene transfer with modified polyethylenimines. J. Gene Med. 6(Suppl 1):S3–S10 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov. Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug. Chem. 9:805–812 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. S. Vinogradov, E. Batrakova, S. Li, and A. Kabanov. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug. Chem. 10:851–860 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).

    Article  PubMed  Google Scholar 

  35. S. Mao, M. Neu, O. Germershaus, O. Merkel, J. Sitterberg, U. Bakowsky, and T. Kissel. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug. Chem. 17:1209–1218 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. R. Morishita, T. Sugimoto, M. Aoki, I. Kida, N. Tomita, A. Moriguchi, K. Maeda, Y. Sawa, Y. Kaneda, J. Higaki, and T. Ogihara. In vivo transfection of cis element “decoy” against nuclear factor-kappaB binding site prevents myocardial infarction. Nat. Med. 3:894–899 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. S. Fichtner-Feigl, I. J. Fuss, J. C. Preiss, W. Strober, and A. Kitani. Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-kappa B decoy oligonucleotides. J. Clin. Invest. 115:3057–3071 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. C. Desmet, P. Gosset, B. Pajak, D. Cataldo, M. Bentires-Alj, P. Lekeux, and F. Bureau. Selective blockade of NF-kappa B activity in airway immune cells inhibits the effector phase of experimental asthma. J. Immunol. 173:5766–5775 (2004).

    PubMed  CAS  Google Scholar 

  39. J. R. Perez, Y. Li, C. A. Stein, S. Majumder, A. van Oorschot, and R. Narayanan. Sequence-independent induction of Sp1 transcription factor activity by phosphorothioate oligodeoxynucleotides. Proc. Natl. Acad. Sci. U. S. A. 91:5957–5961 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. R. M. Ransohoff. Natalizumab and PML. Nat. Neurosci. 8:1275 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Holger Petersen (Basel) for synthesis and analysis of the biotin-PEG-PEI copolymer and Young Tag Ko for preparation of the rhodamine-biotin-PEG-PEI conjugate. We appreciate the helpful discussions with Dr. Thomas Kissel (Marburg). This work was supported by grant 1R01NS045043 to UB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Bickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, R., Osburg, B., Fischer, D. et al. Targeted Delivery of Complexes of Biotin–PEG–Polyethylenimine and NF-κB Decoys to Brain-derived Endothelial Cells in Vitro . Pharm Res 25, 605–615 (2008). https://doi.org/10.1007/s11095-007-9389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9389-y

Key words

Navigation