Skip to main content
Log in

Increased Erythropoietin Elimination in Fetal Sheep Following Chronic Phlebotomy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine by pharmacokinetic (PK) means the role of erythropoietin-receptor (EPO-R) upregulation in fetuses on the elimination of erythropoietin (EPO).

Materials and Methods

Six fetal sheep were catheterized at a gestational age of 125–127 days and phlebotomized daily for 6 days. Paired tracer PK studies using recombinant human EPO (rHuEPO) were conducted in the sheep fetuses at baseline and post-phlebotomy, 7 days later. A PK model with Michaelis-Menten elimination was simultaneously fit to the PK data at baseline and post-phlebotomy for each fetus.

Results

Daily phlebotomies reduced the hemoglobin levels from baseline values of 10.8 (5%) (mean (C.V.)) g/dl to a nadir of 4.5 (17%) g/dl post-phlebotomy. The endogenous EPO concentration rapidly increased after the first phlebotomy and remained elevated, although variable, thereafter. The Michaelis-Menten maximal rHuEPO elimination rate parameter, Vmax, was significantly greater post-phlebotomy than at baseline (p < 0.05), increasing 1.31 fold. The fetal baseline “linear” clearance at very low concentrations of rHuEPO was determined to be 117 ml/kg/h, similar to that determined in newborn sheep but 2–3 fold higher than that determined in adult sheep.

Conclusions

The observed increase in Vmax is consistent with an up-regulation of EPO-R due to a positive feedback resulting from the phlebotomy-induced anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

125I-rHuEPO:

125I-labeled rHuEPO

BFU-E:

burst forming unit-erythroid

CFU-E:

colony forming unit-erythroid

Cl:

clearance at “very low” concentrations

CL :

plasma 125I- rHuEPO concentration in cpms/ml (labeled)

CRI:

constant rate infusion

CU :

plasma rHuEPO concentration in mU/ml (unlabeled)

DL :

IV bolus 125I- rHuEPO loading dose

EPO:

erythropoietin

EPO-R:

erythropoietin receptor

Hb:

hemoglobin

IV:

intravenous

k12 :

first order rate constant of distribution out of the central compartment

k21 :

first order rate constant of distribution into the central compartment

km :

plasma rHuEPO concentration where 50% of Vmax occurs

PD:

pharmacodynamic

PK:

pharmacokinetic

R:

IV infusion rate of 125I-rHuEPO

RhuEPO:

recombinant human erythropoietin

t0 :

initial time

TIM:

tracer interaction method

V:

apparent volume of distribution

Vmax :

maximal rate of rHuEPO elimination

Z:

125I- rHuEPO distribution variable

References

  1. R. Hoffman, E. J. Benz Jr., S. J. Shattil, B. Furie, H. J. Cohen, L. E. Silberstein, and P. McGlave. Hematology: Basic Principles and Applications, Elsevier, USA, 2005.

    Google Scholar 

  2. J. W. Fisher. Erythropoietin: physiology and pharmacology update. Exp. Biol. Med. (Maywood) 228:1–14 (2003).

    CAS  Google Scholar 

  3. J. Rossert and K. U. Eckardt. Erythropoietin receptors: their role beyond erythropoiesis. Nephrol. Dial. Transplant. 20:1025–1028 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. M. Brines and A. Cerami. Discovering erythropoietin’s extra-hematopoietic functions: biology and clinical promise. Kidney Int. 70:246–250 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. K. Sawada, S. B. Krantz, C. H. Dai, S. T. Koury, S. T. Horn, A. D. Glick, and C. I. Civin. Purification of human blood burst-forming units-erythroid and demonstration of the evolution of erythropoietin receptors. J. Cell Physiol. 142:219–230 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. J. W. Adamson. Regulation of red blood cell production. Am. J. Med. 101:4S–6S (1996).

    Article  PubMed  CAS  Google Scholar 

  7. J. H. Jandl. Blood: Textbook of Hematology, Little Brown, USA, 1996.

    Google Scholar 

  8. S. T. Sawyer, S. B. Krantz, and E. Goldwasser. Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J. Biol. Chem. 262:5554–62 (1987).

    PubMed  CAS  Google Scholar 

  9. D. L. Beckman, L. L. Lin, M. E. Quinones, and G. D. Longmore. Activation of the erythropoietin receptor is not required for internalization of bound erythropoietin. Blood 94:2667–75 (1999).

    PubMed  CAS  Google Scholar 

  10. S. T. Sawyer and W. D. Hankins. The functional form of the erythropoietin receptor is a 78-kDa protein: correlation with cell surface expression, endocytosis, and phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 90:6849–6853 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. M. Kato, H. Kamiyama, A. Okazaki, K. Kumaki, Y. Kato, and Y. Sugiyama. Mechanism for the nonlinear pharmacokinetics of erythropoietin in rats. J. Pharmacol. Exp. Ther. 283:520–527 (1997).

    PubMed  CAS  Google Scholar 

  12. W. Jelkmann. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur. J. Haematol. 69:265–274 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. M. Kato, Y. Kato, and Y. Sugiyama. Mechanism of the upregulation of erythropoietin-induced uptake clearance by the spleen. Am. J. Physiol. 276:E887–E895 (1999).

    PubMed  CAS  Google Scholar 

  14. H. Kinoshita, N. Ohishi, S. Tokura, and A. Okazaki. Pharmacokinetics and distribution of recombinant human erythropoietin in rats with renal dysfunction. Arzneim-Forsch/Drug Res. 42(I):682–686 (1992).

    CAS  Google Scholar 

  15. J. A. Widness, P. Veng-Pedersen, C. Peters, L. M. Periera, R. L. Schmidt, and L. S. Lowe. Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects. J. Appl. Physiol. 80:140–148 (1996).

    PubMed  CAS  Google Scholar 

  16. T. Sans, J. Joven, E. Vilella, G. Masdeu, and M. Farre. Pharmacokinetics of several subcutaneous doses of erythropoietin: potential implications for blood transfusion. Clin. Exp. Pharmacol. Physiol. 27:179–184 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. P. Veng-Pedersen, S. Chapel, N. H. Al-Huniti, R. L. Schmidt, E. M. Sedars, R. J. Hohl, and J. A. Widness. Pharmacokinetic tracer kinetics analysis of changes in erythropoietin receptor population in phlebotomy-induced anemia and bone marrow ablation. Biopharm. Drug Dispos. 25:149–156 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. S. H. Chapel, P. Veng-Pedersen, R. L. Schmidt, and J. A. Widness. Receptor-based model accounts for phlebotomy-induced changes in erythropoietin pharmacokinetics. Exp. Hematol. 29:425–431 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. S. Chapel, P. Veng-Pedersen, R. J. Hohl, R. L. Schmidt, E. M. McGuire, and J. A. Widness. Changes in erythropoietin pharmacokinetics following busulfan-induced bone marrow ablation in sheep: evidence for bone marrow as a major erythropoietin elimination pathway. J. Pharmacol. Exp. Ther. 298:820–824 (2001).

    PubMed  CAS  Google Scholar 

  20. P. Veng-Pedersen, S. Chapel, N. H. Al-Huniti, R. L. Schmidt, E. M. Sedars, R. J. Hohl, and J. A. Widness. A differential pharmacokinetic analysis of the erythropoietin receptor population in newborn and adult sheep. J. Pharmacol. Exp. Ther. 306: 532–537 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. M. Cazzola, R. Guarnone, P. Cerani, E. Centenara, A. Rovati, and Y. Beguin. Red blood cell precursor mass as an independent determinant of serum erythropoietin level. Blood 91:2139–2145 (1998).

    PubMed  CAS  Google Scholar 

  22. Y. Beguin, G. K. Clemons, P. Pootrakul, and G. Fillet. Quantitative assessment of erythropoiesis and functional classification of anemia based on measurements of serum transferrin receptor and erythropoietin. Blood 81:1067–1076 (1993).

    PubMed  CAS  Google Scholar 

  23. G. de Klerk, P. C. Rosengarten, R. J. Vet, and R. Goudsmit. Serum erythropoietin (EST) titers in anemia. Blood 58:1164–1170 (1981).

    PubMed  Google Scholar 

  24. S. E. Juul, A. T. Yachnis, and R. D. Christensen. Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum. Dev. 52:235–249 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. F. Farrell and A. Lee. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist. 9(Suppl. 5):18–30 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. J. A. Widness, P. Veng-Pedersen, N. B. Modi, R. L. Schmidt, and D. H. Chestnut. Developmental differences in erythropoietin pharmacokinetics: Increased clearance and distribution in fetal and neonatal sheep. J. Pharmacol. Exp. Ther. 261:977–984 (1992).

    PubMed  CAS  Google Scholar 

  27. M. S. Brown, M. A. Jones, R. K. Ohls, and R. D. Christensen. Single-dose pharmacokinetics of recombinant human erythropoietin in preterm infants after intravenous and subcutaneous administration. J. Pediatr. 122:655–657 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. P. Veng-Pedersen, J. A. Widness, J. Wang, and R. L. Schmidt. A tracer interaction method for nonlinear pharmacokinetics analysis: application to evaluation of nonlinear elimination. J. Pharmacokinet. Biopharm. 25:569–593 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. R. Ramakrishnan, W. K. Cheung, M. C. Wacholtz, N. Minton, and W. J. Jusko. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J. Clin. Pharmacol. 44:991–1002 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. P. Veng-Pedersen, J. A. Widness, L. M. Pereira, R. L. Schmidt, and L. S. Lowe. A comparison of nonlinear pharmacokinetics of erythropoietin in sheep and humans. Biopharm. Drug Dispos. 20:217–223 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. P. Veng-Pedersen, J. A. Widness, L. M. Pereira, C. Peters, R. L. Schmidt, and L. S. Lowe. Kinetic evaluation of nonlinear drug elimination by a disposition decomposition analysis. Application to the analysis of the nonlinear elimination kinetics of erythropoietin in adult humans. J. Pharm. Sci. 84:760–767 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. J. J. Jennings and J. P. Crowley. The influence of mating management on fertility in ewes following progesterone-PMS treatment. Vet. Rec. 90:495–498 (1972).

    PubMed  CAS  Google Scholar 

  33. J. L. Segar, K. Bedell, W. V. Page, J. E. Mazursky, A. M. Nuyt, and J. E. Robillard. Effect of cortisol on gene expression of the renin-angiotensin system in fetal sheep. Pediatr. Res. 37:741–746 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. J. A. Widness, R. L. Schmidt, P. Veng-Pedersen, N. B. Modi, and S. T. Sawyer. A sensitive and specific erythropoietin immunoprecipitation assay: application to pharmacokinetic studies. J. Lab. Clin. Med. 119:285–294 (1992).

    PubMed  CAS  Google Scholar 

  35. M. F. Hutchinson, and F. R. deHoog. Smoothing noise data with spline functions. Numer. Math. 47:99–106 (1985).

    Article  Google Scholar 

  36. H. Akaike. Automatic control: A new look at the statistical model identification. IEEE Trans. 19:716–723 (1974).

    Google Scholar 

  37. P. Veng-Pedersen. Curve fitting and modelling in pharmacokinetics and some practical experiences with NONLIN and a new program FUNFIT. J. Pharmacokinet. Biopharm. 5:513–531 (1977).

    Article  Google Scholar 

  38. S. H. Chapel, P. Veng-Pedersen, R. L. Schmidt, and J. A. Widness. A pharmacodynamic analysis of erythropoietin-stimulated reticulocyte response in phlebotomized sheep. J. Pharmacol. Exp. Ther. 295:346–351 (2000).

    PubMed  CAS  Google Scholar 

  39. P. Veng-Pedersen, S. Chapel, R. L. Schmidt, N. H. Al-Huniti, R. T. Cook, and J. A. Widness. An integrated pharmacodynamic analysis of erythropoietin, reticulocyte, and hemoglobin responses in acute anemia. Pharm. Res. 19:1630–1635 (2002).

    Article  PubMed  CAS  Google Scholar 

  40. N. H. Al-Huniti, J. A. Widness, R. L. Schmidt, and P. Veng-Pedersen. Pharmacodynamic analysis of changes in reticulocyte subtype distribution in phlebotomy-induced stress erythropoiesis. J. Pharmacokinet. Pharmacodyn. 32:359–376 (2005).

    Article  PubMed  Google Scholar 

  41. R. A. Brace. Blood volume and its measurement in the chronically catheterized sheep fetus. Am. J. Physiol. 244: H487–H494 (1983).

    PubMed  CAS  Google Scholar 

  42. A. C. Guyton, and J. E. Hall. Textbook of Medical Physiology, Saunders, Philadelphia, 2000.

    Google Scholar 

  43. R. S. Hillman, K. A. Ault, and H. M. Rinder. Hematology in Clinical Practice, McGraw-Hill, USA, 2005.

    Google Scholar 

  44. R. V. Pierre. Reticulocytes. Their usefulness and measurement in peripheral blood. Clin. Lab. Med. 22:63–79 (2002).

    Article  PubMed  Google Scholar 

  45. C. Brugnara. Use of reticulocyte cellular indices in the diagnosis and treatment of hematological disorders. Int. J. Clin. Lab. Res. 28:1–11 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. A. Major, C. Bauer, C. Breymann, A. Huch, and R. Huch. rh-erythropoietin stimulates immature reticulocyte release in man. Br. J. Haematol. 87:605–608 (1994).

    PubMed  CAS  Google Scholar 

  47. J. K. Chamberlain, L. Weiss, and R. I. Weed. Bone marrow sinus cell packing: a determinant of cell release. Blood. 46:91–102 (1975).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The rabbit antiserum used in the erythropoietin radioimmunoassay was a generous gift from Gisela K. Clemons, PhD. This work is supported by United States Public Health Service, National Institute of Health grants R01 HL-64770 (JLS) and P01 HL49625 (JAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Veng-Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freise, K.J., Widness, J.A., Segar, J.L. et al. Increased Erythropoietin Elimination in Fetal Sheep Following Chronic Phlebotomy. Pharm Res 24, 1653–1659 (2007). https://doi.org/10.1007/s11095-007-9295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9295-3

Key words

Navigation