Pharmaceutical Research

, Volume 24, Issue 10, pp 1803–1823 | Cite as

Bile Acid Transporters: Structure, Function, Regulation and Pathophysiological Implications

Review Article


Specific transporters expressed in the liver and the intestine, play a critical role in driving the enterohepatic circulation of bile acids. By preserving a circulating pool of bile acids, an important factor influencing bile flow, these transporters are involved in maintaining bile acid and cholesterol homeostasis. Enterohepatic circulation of bile acids is fundamentally composed of two major processes: secretion from the liver and absorption from the intestine. In the hepatocytes, the vectorial transport of bile acids from blood to bile is ensured by Na+ taurocholate co-transporting peptide (NTCP) and organic anion transport polypeptides (OATPs). After binding to a cytosolic bile acid binding protein, bile acids are secreted into the canaliculus via ATP-dependent bile salt excretory pump (BSEP) and multi drug resistant proteins (MRPs). Bile acids are then delivered to the intestinal lumen through bile ducts where they emulsify dietary lipids and cholesterol to facilitate their absorption. Intestinal epithelial cells reabsorb the majority of the secreted bile acids through the apical sodium dependent bile acid transporter (ASBT) and sodium independent organic anion transporting peptide (OATPs). Cytosolic ileal bile acid binding protein (IBABP) mediates the transcellular movement of bile acids to the basolateral membrane across which they exit the cells via organic solute transporters (OST). An essential role of bile acid transporters is evident from the pathology associated with their genetic disruption or dysregulation of their function. Malfunctioning of hepatic and intestinal bile acid transporters is implicated in the pathophysiology of cholestatic liver disease and the depletion of circulating pool of bile acids, respectively. Extensive efforts have been recently made to enhance our understanding of the structure, function and regulation of the bile acid transporters and exploring new potential therapeutics to treat bile acid or cholesterol related diseases. This review will highlight current knowledge about structure, function and molecular characterization of bile acid transporters and discuss the implications of their defects in various hepatic and intestinal disorders.

Key words

bile acids cholestasis enterohepatic circulation 



The authors are thankful to Drs Pradeep K. Dudeja, K. Ramaswamy for their invaluable suggestions and critical reading of the manuscript. Thanks are also due to Dr. Fadi Annaba for his help in the preparation of this review. Studies in the authors laboratory are supported by NIDDK grant DK71596 (WAA).


  1. 1.
    A. F. Hofmann. Biliary secretion and excretion: the hepatobiliary component of the enterohepatic circulation of bile acids. Raven Press, 1994.Google Scholar
  2. 2.
    A. F. Hofmann. Bile acids: the good, the bad, and the ugly. News Physiol. Sci. 14:24–29 (1999).PubMedGoogle Scholar
  3. 3.
    A. F. Hofmann. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 159:2647–2658 (1999).PubMedGoogle Scholar
  4. 4.
    G. A. Kullak-Ublick, B. Stieger, and P. J. Meier. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126:322–342 (2004).PubMedGoogle Scholar
  5. 5.
    P. J. Meier and B. Stieger. Bile salt transporters. Annu. Rev. Physiol. 64:635–661 (2002).PubMedGoogle Scholar
  6. 6.
    M. Trauner and J. L. Boyer. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83:633–671 (2003).PubMedGoogle Scholar
  7. 7.
    S. M. Houten, M. Watanabe, and J. Auwerx. Endocrine functions of bile acids. EMBO J. 25:1419–1425 (2006).PubMedGoogle Scholar
  8. 8.
    A. Chawla, E. Saez, and R. M. Evans. Don’t know much bile-ology. Cell 103:1–4 (2000).PubMedGoogle Scholar
  9. 9.
    D. W. Russell. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72:137–174 (2003).PubMedGoogle Scholar
  10. 10.
    R. N. Redinger. The role of the enterohepatic circulation of bile salts and nuclear hormone receptors in the regulation of cholesterol homeostasis: Bile salts as ligands for nuclear hormone receptors. Can. J. Gastroenterol. 17:265–271 (2003).PubMedGoogle Scholar
  11. 11.
    R. N. Redinger. Nuclear receptors in cholesterol catabolism: molecular biology of the enterohepatic circulation of bile salts and its role in cholesterol homeostasis. J. Lab. Clin. Med. 142:7–20 (2003).PubMedGoogle Scholar
  12. 12.
    R. N. Redinger. The coming of age of our understanding of the enterohepatic circulation of bile salts. Am. J. Surg. 185:168–172 (2003).PubMedGoogle Scholar
  13. 13.
    G. D. Potter. Bile acid diarrhea. Dig. Dis. 16:118–124 (1998).PubMedGoogle Scholar
  14. 14.
    S. Lowes and N. L. Simmons. Human intestinal cell monolayers are preferentially sensitive to disruption of barrier function from basolateral exposure to cholic acid: correlation with membrane transport and transepithelial secretion. Pflugers Arch. 443:265–273 (2001).PubMedGoogle Scholar
  15. 15.
    S. Lechner, U. Muller-Ladner, K. Schlottmann, B. Jung, M. McClelland, J. Ruschoff, J. Welsh, J. Scholmerich, and F. Kullmann. Bile acids mimic oxidative stress induced upregulation of thioredoxin reductase in colon cancer cell lines. Carcinogenesis 23:1281–1288 (2002).PubMedGoogle Scholar
  16. 16.
    H. Bernstein, C. Bernstein, C. M. Payne, K. Dvorakova, and H. Garewal. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. 589:47–65 (2005).PubMedGoogle Scholar
  17. 17.
    W. A. Alrefai, S. Saksena, S. Tyagi, R. K. Gill, K. Ramaswamy, and P. K. Dudeja. Taurodeoxycholic bile acid inhibits chloride uptake in Caco2 cells. Dig. Dis. Sci. In press:(2007).Google Scholar
  18. 18.
    M. S. Anwer. Transhepatic solute transport and bile formation. Adv. Vet. Sci. Comp. Med. 37:1–29 (1993).PubMedGoogle Scholar
  19. 19.
    R. J. Bahar and A. Stolz. Bile acid transport. Gastroenterol. Clin. North Am. 28:27–58 (1999).PubMedGoogle Scholar
  20. 20.
    G. Zollner and M. Trauner. Molecular mechanisms of cholestasis. Wien. Med. Wochenschr. 156:380–385 (2006).PubMedGoogle Scholar
  21. 21.
    J. J. Eloranta, P. J. Meier, and G. A. Kullak-Ublick. Coordinate transcriptional regulation of transport and metabolism. Methods Enzymol. 400:511–530 (2005).PubMedGoogle Scholar
  22. 22.
    C. Pauli-Magnus and P. J. Meier. Hepatobiliary transporters and drug-induced cholestasis. Hepatology 44:778–87 (2006).PubMedGoogle Scholar
  23. 23.
    G. A. Kullak-Ublick, J. Glasa, C. Boker, M. Oswald, U. Grutzner, B. Hagenbuch, B. Stieger, P. J. Meier, U. Beuers, W. Kramer, G. Wess, and G. Paumgartner. Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113:1295–1305 (1997).PubMedGoogle Scholar
  24. 24.
    R. P. Oude Elferink, C. C. Paulusma, and A. K. Groen. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 130:908–925 (2006).PubMedGoogle Scholar
  25. 25.
    P. J. Meier. Molecular mechanisms of hepatic bile salt transport from sinusoidal blood into bile. Am. J. Physiol. 269:G801–G812 (1995).PubMedGoogle Scholar
  26. 26.
    L. B. Agellon and E. C. Torchia. Intracellular transport of bile acids. Biochim. Biophys. Acta 1486:198–209 (2000).PubMedGoogle Scholar
  27. 27.
    T. Horie, T. Mizuma, S. Kasai, and S. Awazu. Conformational change in plasma albumin due to interaction with isolated rat hepatocyte. Am. J. Physiol. 254:G465–G470 (1988).PubMedGoogle Scholar
  28. 28.
    G. M. Groothuis, M. J. Hardonk, K. P. Keulemans, P. Nieuwenhuis, and D. K. Meijer. Autoradiographic and kinetic demonstration of acinar heterogeneity of taurocholate transport. Am. J. Physiol. 243:G455–G462 (1982).PubMedGoogle Scholar
  29. 29.
    A. L. Jones, G. T. Hradek, R. H. Renston, K. Y. Wong, G. Karlaganis, and G. Paumgartner. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am. J. Physiol. 238:G233–G237 (1980).PubMedGoogle Scholar
  30. 30.
    T. J. Layden and J. L. Boyer. Influence of bile acids on bile canalicular membrane morphology and the lobular gradient in canalicular size. Lab. Invest. 39:110–119 (1978).PubMedGoogle Scholar
  31. 31.
    M. S. Anwerand D. Hegner. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system. Hoppe-Seylers Z. Physiol. Chem. 359:181–192 (1978).PubMedGoogle Scholar
  32. 32.
    R. W. Van Dyke, J. E. Stephens, and B. F. Scharschmidt. Bile acid transport in cultured rat hepatocytes. Am. J. Physiol. 243:G484–G492 (1982).PubMedGoogle Scholar
  33. 33.
    C. E. Bear, J. S. Davison, and E. A. Shaffer. Sodium-dependent taurocholate uptake by isolated rat hepatocytes occurs through an electrogenic mechanism. Biochim. Biophys. Acta 903:388–394 (1987).PubMedGoogle Scholar
  34. 34.
    S. A. Weinman, M. W. Carruth, and P. A. Dawson. Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J. Biol. Chem. 273:34691–34695 (1998).PubMedGoogle Scholar
  35. 35.
    B. Hagenbuch and P. Dawson. The sodium bile salt cotransport family SLC10. Pflugers Arch. 447:566–570 (2004).PubMedGoogle Scholar
  36. 36.
    J. Geyer, T. Wilke, and E. Petzinger. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn-Schmiedeberg’s Arch. Pharmacol. 372:413–431 (2006).Google Scholar
  37. 37.
    M. Ananthanarayanan, O. C. Ng, J. L. Boyer, and F. J. Suchy. Characterization of cloned rat liver Na(+)-bile acid cotransporter using peptide and fusion protein antibodies. Am. J. Physiol. 267:G637–G643 (1994).PubMedGoogle Scholar
  38. 38.
    J. Y. Kim, K. H. Kim, J. A. Lee, W. Namkung, A. Q. Sun, M. Ananthanarayanan, F. J. Suchy, D. M. Shin, S. Muallem, and M. G. Lee. Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells. Gastroenterology 122:1941–1953 (2002).PubMedGoogle Scholar
  39. 39.
    S. J. Rippin, B. Hagenbuch, P. J. Meier, and B. Stieger. Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 33:776–782 (2001).PubMedGoogle Scholar
  40. 40.
    D. Liang, B. Hagenbuch, P. J. Meier, and B. Stieger. Parallel decrease of Na(+)-taurocholate cotransport and its encoding mRNA in primary cultures of rat hepatocytes. Hepatology 18:1162–1166 (1993).PubMedGoogle Scholar
  41. 41.
    B. Hagenbuch, B. F. Scharschmidt, and P. J. Meier. Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes. Biochem. J. 316(Pt 3):901–904 (1996).PubMedGoogle Scholar
  42. 42.
    B. Hagenbuch and P. J. Meier. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J. Clin. Invest. 93:1326–1331 (1994).PubMedGoogle Scholar
  43. 43.
    R. M. Green, M. Ananthanarayanan, F. J. Suchy, and D. R. Beier. Genetic mapping of the Na(+)-taurocholate cotransporting polypeptide to mouse chromosome 12. Mamm. Genome 9:598 (1998).PubMedGoogle Scholar
  44. 44.
    M. A. Cohn, D. J. Rounds, S. J. Karpen, M. Ananthanarayanan, and F. J. Suchy. Assignment of a rat liver Na+/bile acid cotransporter gene to chromosome 6q24. Mamm. Genome 6:60 (1995).PubMedGoogle Scholar
  45. 45.
    V. Cattori, U. Eckhardt, and B. Hagenbuch. Molecular cloning and functional characterization of two alternatively spliced Ntcp isoforms from mouse liver1. Biochim. Biophys. Acta 1445:154–159 (1999).PubMedGoogle Scholar
  46. 46.
    S. Hallen, O. Mareninova, M. Branden, and G. Sachs. Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry 41:7253–7266 (2002).PubMedGoogle Scholar
  47. 47.
    O. Mareninova, J. M. Shin, O. Vagin, S. Turdikulova, S. Hallen, and G. Sachs. Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry 44:13702–13712 (2005).PubMedGoogle Scholar
  48. 48.
    A. Schroeder, U. Eckhardt, B. Stieger, R. Tynes, C. D. Schteingart, A. F. Hofmann, P. J. Meier, and B. Hagenbuch. Substrate specificity of the rat liver Na(+)-bile salt cotransporter in Xenopus laevis oocytes and in CHO cells. Am. J. Physiol. 274:G370–G375 (1998).PubMedGoogle Scholar
  49. 49.
    S. Hata, P. Wang, N. Eftychiou, M. Ananthanarayanan, A. Batta, G. Salen, K. S. Pang, and A. W. Wolkoff. Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. Am. J. Physiol.: Gastrointest. Liver Physiol. 285:G829–G839 (2003).Google Scholar
  50. 50.
    A. L. Craddock, M. W. Love, R. W. Daniel, L. C. Kirby, H. C. Walters, M. H. Wong, and P. A. Dawson. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am. J. Physiol. 274:G157–G169 (1998).PubMedGoogle Scholar
  51. 51.
    S. Hallen, J. Fryklund, and G. Sachs. Inhibition of the human sodium/bile acid cotransporters by side-specific methanethiosulfonate sulfhydryl reagents: substrate-controlled accessibility of site of inactivation. Biochemistry 39:6743–6750 (2000).PubMedGoogle Scholar
  52. 52.
    D. Zahner, U. Eckhardt, and E. Petzinger. Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur. J. Biochem. 270:1117–1127 (2003).PubMedGoogle Scholar
  53. 53.
    T. Saeki, T. Kuroda, M. Matsumoto, R. Kanamoto, and K. Iwami. Effects of Cys mutation on taurocholic acid transport by mouse ileal and hepatic sodium-dependent bile acid transporters. Biosci. Biotechnol. Biochem. 66:467–470 (2002).PubMedGoogle Scholar
  54. 54.
    R. H. Ho, B. F. Leake, R. L. Roberts, W. Lee, and R. B. Kim. Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J. Biol. Chem. 279:7213–7222 (2004).PubMedGoogle Scholar
  55. 55.
    M. Arrese, M. Trauner, M. Ananthanarayanan, M. Pizarro, N. Solis, L. Accatino, C. Soroka, J. L. Boyer, S. J. Karpen, J. F. Miquel, and F. J. Suchy. Down-regulation of the Na+/taurocholate cotransporting polypeptide during pregnancy in the rat. J. Hepatol. 38:148–155 (2003).PubMedGoogle Scholar
  56. 56.
    G. Zollner, P. Fickert, D. Silbert, A. Fuchsbichler, H. U. Marschall, K. Zatloukal, H. Denk, and M. Trauner. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J. Hepatol. 38:717–727 (2003).PubMedGoogle Scholar
  57. 57.
    G. Zollner, P. Fickert, R. Zenz, A. Fuchsbichler, C. Stumptner, L. Kenner, P. Ferenci, R. E. Stauber, G. J. Krejs, H. Denk, K. Zatloukal, and M. Trauner. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33:633–646 (2001).PubMedGoogle Scholar
  58. 58.
    M. S. Anwer. Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology 39:581–590 (2004).PubMedGoogle Scholar
  59. 59.
    J. Y. Chiang. Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am. J. Physiol. Gastrointest. Liver. Physiol. 284:G349–G356 (2003).PubMedGoogle Scholar
  60. 60.
    L. A. Denson, E. Sturm, W. Echevarria, T. L. Zimmerman, M. Makishima, D. J. Mangelsdorf, and S. J. Karpen. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121:140–147 (2001).PubMedGoogle Scholar
  61. 61.
    D. Jungand G. A. Kullak-Ublick. Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 37:622–631 (2003).PubMedGoogle Scholar
  62. 62.
    M. Trauner, M. Arrese, H. Lee, J. L. Boyer, and S. J. Karpen. Endotoxin downregulates rat hepatic ntcp gene expression via decreased activity of critical transcription factors. J. Clin. Invest. 101:2092–2100 (1998).PubMedGoogle Scholar
  63. 63.
    L. A. Denson, K. L. Auld, D. S. Schiek, M. H. McClure, D. J. Mangelsdorf, and S. J. Karpen. Interleukin-1beta suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation. J. Biol. Chem. 275:8835–8843 (2000).PubMedGoogle Scholar
  64. 64.
    D. Li, T. L. Zimmerman, S. Thevananther, H. Y. Lee, J. M. Kurie, and S. J. Karpen. Interleukin-1 beta-mediated suppression of RXR: RAR transactivation of the Ntcp promoter is JNK-dependent. J. Biol. Chem. 277:31416–31422 (2002).PubMedGoogle Scholar
  65. 65.
    J. J. Eloranta, D. Jung, and G. A. Kullak-Ublick. The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Mol. Endocrinol. 20:65–79 (2006).PubMedGoogle Scholar
  66. 66.
    T. C. Ganguly, M. L. O’Brien, S. J. Karpen, J. F. Hyde, F. J. Suchy, and M. Vore. Regulation of the rat liver sodium-dependent bile acid cotransporter gene by prolactin. Mediation of transcriptional activation by Stat5. J. Clin. Invest. 99:2906–2914 (1997).PubMedGoogle Scholar
  67. 67.
    M. S. Anwer, H. Gillin, S. Mukhopadhyay, N. Balasubramaniyan, F. J. Suchy, and M. Ananthanarayanan. Dephosphorylation of Ser-226 facilitates plasma membrane retention of Ntcp. J. Biol. Chem. 280:33687–33692 (2005).PubMedGoogle Scholar
  68. 68.
    Q. Zhu, P. von Dippe, W. Xing, and D. Levy. Membrane topology and cell surface targeting of microsomal epoxide hydrolase. Evidence for multiple topological orientations. J. Biol. Chem. 274:27898–27904 (1999).PubMedGoogle Scholar
  69. 69.
    P. von Dippe, M. Amoui, R. H. Stellwagen, and D. Levy. The functional expression of sodium-dependent bile acid transport in Madin–Darby canine kidney cells transfected with the cDNA for microsomal epoxide hydrolase. J. Biol. Chem. 271:18176–18180 (1996).Google Scholar
  70. 70.
    M. Miyata, G. Kudo, Y. H. Lee, T. J. Yang, H. V. Gelboin, P. Fernandez-Salguero, S. Kimura, and F. J. Gonzalez. Targeted disruption of the microsomal epoxide hydrolase gene. Microsomal epoxide hydrolase is required for the carcinogenic activity of 7,12-dimethylbenz[a]anthracene. J. Biol. Chem. 274:23963–23968 (1999).PubMedGoogle Scholar
  71. 71.
    Q. S. Zhu, W. Xing, B. Qian, P. von Dippe, B. L. Shneider, V. L. Fox, and D. Levy. Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia. Biochim. Biophys. Acta 1638:208–216 (2003).PubMedGoogle Scholar
  72. 72.
    B. Zimmerli, J. Valantinas, and P. J. Meier. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles. J. Pharmacol. Exp. Ther. 250:301–308 (1989).PubMedGoogle Scholar
  73. 73.
    B. Hagenbuch and P. J. Meier. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta 1609:1–18 (2003).PubMedGoogle Scholar
  74. 74.
    B. Hagenbuch and P. J. Meier. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 447:653–665 (2004).PubMedGoogle Scholar
  75. 75.
    G. A. Kullak-Ublick, B. Hagenbuch, B. Stieger, C. D. Schteingart, A. F. Hofmann, A. W. Wolkoff, and P. J. Meier. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology 109:1274–1282 (1995).PubMedGoogle Scholar
  76. 76.
    I. Tamai, J. Nezu, H. Uchino, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 273:251–260 (2000).PubMedGoogle Scholar
  77. 77.
    T. K. Lee, C. L. Hammond, and N. Ballatori. Intracellular glutathione regulates taurocholate transport in HepG2 cells. Toxicol. Appl. Pharmacol. 174:207–215 (2001).PubMedGoogle Scholar
  78. 78.
    M. Kakyo, H. Sakagami, T. Nishio, D. Nakai, R. Nakagomi, T. Tokui, T. Naitoh, S. Matsuno, T. Abe, and H. Yawo. Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS Lett. 445:343–6 (1999).PubMedGoogle Scholar
  79. 79.
    C. Reichel, B. Gao, J. Van Montfoort, V. Cattori, C. Rahner, B. Hagenbuch, B. Stieger, T. Kamisako, and P. J. Meier. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology 117:688–695 (1999).PubMedGoogle Scholar
  80. 80.
    G. A. Kullak-Ublick, M. G. Ismair, B. Stieger, L. Landmann, R. Huber, F. Pizzagalli, K. Fattinger, P. J. Meier, and B. Hagenbuch. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525–533 (2001).PubMedGoogle Scholar
  81. 81.
    J. Konig, Y. Cui, A. T. Nies, and D. Keppler. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver Physiol. 278:G156–G164 (2000).PubMedGoogle Scholar
  82. 82.
    R. G. Tirona, B. F. Leake, G. Merino, and R. B. Kim. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276:35669–35675 (2001).PubMedGoogle Scholar
  83. 83.
    T. Nozawa, M. Nakajima, I. Tamai, K. Noda, J. Nezu, Y. Sai, A. Tsuji, and T. Yokoi. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther. 302:804–813 (2002).PubMedGoogle Scholar
  84. 84.
    T. Abe, M. Unno, T. Onogawa, T. Tokui, T. N. Kondo, R. Nakagomi, H. Adachi, K. Fujiwara, M. Okabe, T. Suzuki, K. Nunoki, E. Sato, M. Kakyo, T. Nishio, J. Sugita, N. Asano, M. Tanemoto, M. Seki, F. Date, K. Ono, Y. Kondo, K. Shiiba, M. Suzuki, H. Ohtani, T. Shimosegawa, K. Iinuma, H. Nagura, S. Ito, and S. Matsuno. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology 120:1689–1699 (2001).PubMedGoogle Scholar
  85. 85.
    J. Konig, Y. Cui, A. T. Nies, and D. Keppler. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem. 275:23161–23168 (2000).PubMedGoogle Scholar
  86. 86.
    D. Q. Shih, M. Bussen, E. Sehayek, M. Ananthanarayanan, B. L. Shneider, F. J. Suchy, S. Shefer, J. S. Bollileni, F. J. Gonzalez, J. L. Breslow, and M. Stoffel. Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nat. Genet. 27:375–382 (2001).PubMedGoogle Scholar
  87. 87.
    G. P. Hayhurst, Y. H. Lee, G. Lambert, J. M. Ward, and F. J. Gonzalez. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol. 21:1393–1403 (2001).PubMedGoogle Scholar
  88. 88.
    F. R. Simon, J. Fortune, M. Iwahashi, S. Bowman, A. Wolkoff, and E. Sutherland. Characterization of the mechanisms involved in the gender differences in hepatic taurocholate uptake. Am. J. Physiol. 276:G556–G565 (1999).PubMedGoogle Scholar
  89. 89.
    R. Lu, N. Kanai, Y. Bao, A. W. Wolkoff, and V. L. Schuster. Regulation of renal oatp mRNA expression by testosterone. Am. J. Physiol. 270:F332–F337 (1996).PubMedGoogle Scholar
  90. 90.
    Y. Gotoh, Y. Kato, B. Stieger, P. J. Meier, and Y. Sugiyama. Gender difference in the Oatp1-mediated tubular reabsorption of estradiol 17beta-D-glucuronide in rats. Am. J. Physiol., Endocrinol. Metab. 282:E1245–E1254 (2002).Google Scholar
  91. 91.
    G. L. Guo, D. R. Johnson, and C. D. Klaassen. Postnatal expression and induction by pregnenolone-16alpha-carbonitrile of the organic anion-transporting polypeptide 2 in rat liver. Drug Metab. Dispos. 30:283–288 (2002).PubMedGoogle Scholar
  92. 92.
    P. Fickert, G. Zollner, A. Fuchsbichler, C. Stumptner, C. Pojer, R. Zenz, F. Lammert, B. Stieger, P. J. Meier, K. Zatloukal, H. Denk, and M. Trauner. Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology 121:170–183 (2001).PubMedGoogle Scholar
  93. 93.
    M. Oswald, G. A. Kullak-Ublick, G. Paumgartner, and U. Beuers. Expression of hepatic transporters OATP-C and MRP2 in primary sclerosing cholangitis. Liver 21:247–253 (2001).PubMedGoogle Scholar
  94. 94.
    D. Jung, M. Podvinec, U. A. Meyer, D. J. Mangelsdorf, M. Fried, P. J. Meier, and G. A. Kullak-Ublick. Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 122:1954–1966 (2002).PubMedGoogle Scholar
  95. 95.
    G. L. Guo and C. D. Klaassen. Protein kinase C suppresses rat organic anion transporting polypeptide 1- and 2-mediated uptake. J. Pharmacol. Exp. Ther. 299:551–557 (2001).PubMedGoogle Scholar
  96. 96.
    C. J. Soroka, J. M. Lee, F. Azzaroli, and J. L. Boyer. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 33:783–791 (2001).PubMedGoogle Scholar
  97. 97.
    M. Rius, A. T. Nies, J. Hummel-Eisenbeiss, G. Jedlitschky, and D. Keppler. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38:374–384 (2003).PubMedGoogle Scholar
  98. 98.
    J. Konig, D. Rost, Y. Cui, and D. Keppler. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 29:1156–1163 (1999).PubMedGoogle Scholar
  99. 99.
    H. Zeng, G. Liu, P. A. Rea, and G. D. Kruh. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res. 60:4779–4784 (2000).PubMedGoogle Scholar
  100. 100.
    N. Zelcer, K. van de Wetering, R. de Waart, G. L. Scheffer, H. U. Marschall, P. R. Wielinga, A. Kuil, C. Kunne, A. Smith, M. van der Valk, J. Wijnholds, R. O. Elferink, and P. Borst. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. J. Hepatol. 44:768–775 (2006).PubMedGoogle Scholar
  101. 101.
    H. Takikawa, Y. Sugiyama, J. C. Fernandez-Checa, J. Kuhlenkamp, M. Ookhtens, and N. Kaplowitz. Evidence that interference with binding to hepatic cytosol binders can inhibit bile acid excretion in rats. Hepatology 23:1642–1649 (1996).PubMedGoogle Scholar
  102. 102.
    C. J. Sinal, M. Tohkin, M. Miyata, J. M. Ward, G. Lambert, and F. J. Gonzalez. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102:731–744 (2000).PubMedGoogle Scholar
  103. 103.
    F. J. Suchyand M. Ananthanarayanan. Bile salt excretory pump: biology and pathobiology. J. Pediatr. Gastroenterol. Nutr. 43(Suppl 1):S10–S16 (2006).PubMedGoogle Scholar
  104. 104.
    M. Arrese and M. Ananthanarayanan. The bile salt export pump: molecular properties, function and regulation. Pflugers Arch. 449:123–131 (2004).PubMedGoogle Scholar
  105. 105.
    M. V. St-Pierre, G. A. Kullak-Ublick, B. Hagenbuch, and P. J. Meier. Transport of bile acids in hepatic and non-hepatic tissues. J. Exp. Biol. 204:1673–1686 (2001).PubMedGoogle Scholar
  106. 106.
    R. Wang, M. Salem, I. M. Yousef, B. Tuchweber, P. Lam, S. J. Childs, C. D. Helgason, C. Ackerley, M. J. Phillips, and V. Ling. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc. Natl. Acad. Sci. U. S. A. 98:2011–2016 (2001).PubMedGoogle Scholar
  107. 107.
    T. Gerloff, B. Stieger, B. Hagenbuch, J. Madon, L. Landmann, J. Roth, A. F. Hofmann, and P. J. Meier. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 273:10046–10050 (1998).PubMedGoogle Scholar
  108. 108.
    R. M. Green, F. Hoda, and K. L. Ward. Molecular cloning and characterization of the murine bile salt export pump. Gene 241:117–123 (2000).PubMedGoogle Scholar
  109. 109.
    G. Xu, L. X. Pan, S. K. Erickson, B. M. Forman, B. L. Shneider, M. Ananthanarayanan, X. Li, S. Shefer, N. Balasubramanian, L. Ma, H. Asaoka, S. R. Lear, L. B. Nguyen, I. Dussault, F. J. Suchy, G. S. Tint, and G. Salen. Removal of the bile acid pool upregulates cholesterol 7alpha-hydroxylase by deactivating FXR in rabbits. J. Lipid Res. 43:45–50 (2002).PubMedGoogle Scholar
  110. 110.
    J. A. Byrne, S. S. Strautnieks, G. Mieli-Vergani, C. F. Higgins, K. J. Linton, and R. J. Thompson. The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123:1649–1658 (2002).PubMedGoogle Scholar
  111. 111.
    J. Noe, B. Stieger, and P. J. Meier. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 123:1659–1666 (2002).PubMedGoogle Scholar
  112. 112.
    G. Tomer, M. Ananthanarayanan, A. Weymann, N. Balasubramanian, and F. J. Suchy. Differential developmental regulation of rat liver canalicular membrane transporters Bsep and Mrp2. Pediatr. Res. 53:288–294 (2003).PubMedGoogle Scholar
  113. 113.
    H. Wolters, B. M. Elzinga, J. F. Baller, R. Boverhof, M. Schwarz, B. Stieger, H. J. Verkade, and F. Kuipers. Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. J. Hepatol. 37:556–563 (2002).PubMedGoogle Scholar
  114. 114.
    M. Ananthanarayanan, S. Li, N. Balasubramaniyan, F. J. Suchy, and M. J. Walsh. Ligand-dependent activation of the farnesoid X-receptor directs arginine methylation of histone H3 by CARM1. J. Biol. Chem. 279:54348–54357 (2004).PubMedGoogle Scholar
  115. 115.
    G. Rizzo, B. Renga, E. Antonelli, D. Passeri, R. Pellicciari, and S. Fiorucci. The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes. Mol. Pharmacol. 68:551–558 (2005).PubMedGoogle Scholar
  116. 116.
    F. A. Crocenzi, A. D. Mottino, E. J. Sanchez Pozzi, J. M. Pellegrino, E. A. Rodriguez Garay, P. Milkiewicz, M. Vore, R. Coleman, and M. G. Roma. Impaired localisation and transport function of canalicular Bsep in taurolithocholate induced cholestasis in the rat. Gut 52:1170–1177 (2003).PubMedGoogle Scholar
  117. 117.
    F. A. Crocenzi, E. J. Sanchez Pozzi, J. M. Pellegrino, E. A. Rodriguez Garay, A. D. Mottino, and M. G. Roma. Preventive effect of silymarin against taurolithocholate-induced cholestasis in the rat. Biochem. Pharmacol. 66:355–364 (2003).PubMedGoogle Scholar
  118. 118.
    P. L. Jansen, S. S. Strautnieks, E. Jacquemin, M. Hadchouel, E. M. Sokal, G. J. Hooiveld, J. H. Koning, A. De Jager-Krikken, F. Kuipers, F. Stellaard, C. M. Bijleveld, A. Gouw, H. Van Goor, R. J. Thompson, and M. Muller. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117:1370–1379 (1999).PubMedGoogle Scholar
  119. 119.
    L. Wang, C. J. Soroka, and J. L. Boyer. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J. Clin. Invest. 110:965–972 (2002).PubMedGoogle Scholar
  120. 120.
    R. Thompson and S. Strautnieks. BSEP: function and role in progressive familial intrahepatic cholestasis. Semin. Liver Dis. 21:545–550 (2001).PubMedGoogle Scholar
  121. 121.
    L. N. Bull, M. J. van Eijk, L. Pawlikowska, J. A. DeYoung, J. A. Juijn, M. Liao, L. W. Klomp, N. Lomri, R. Berger, B. F. Scharschmidt, A. S. Knisely, R. H. Houwen, and N. B. Freimer. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat. Genet. 18:219–224 (1998).PubMedGoogle Scholar
  122. 122.
    P. L. Jansen and E. Sturm. Genetic cholestasis, causes and consequences for hepatobiliary transport. Liver Int. 23:315–322 (2003).PubMedGoogle Scholar
  123. 123.
    P. Ujhazy, D. Ortiz, S. Misra, S. Li, J. Moseley, H. Jones, and I. M. Arias. Familial intrahepatic cholestasis 1: studies of localization and function. Hepatology 34:768–775 (2001).PubMedGoogle Scholar
  124. 124.
    F. Chen, M. Ananthanarayanan, S. Emre, E. Neimark, L. N. Bull, A. S. Knisely, S. S. Strautnieks, R. J. Thompson, M. S. Magid, R. Gordon, N. Balasubramanian, F. J. Suchy, and B. L. Shneider. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology 126:756–764 (2004).PubMedGoogle Scholar
  125. 125.
    M. Schmitt, R. Kubitz, S. Lizun, M. Wettstein, and D. Haussinger. Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity. Hepatology 33:509–518 (2001).PubMedGoogle Scholar
  126. 126.
    H. Kipp, N. Pichetshote, and I. M. Arias. Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J. Biol. Chem. 276:7218–7224 (2001).PubMedGoogle Scholar
  127. 127.
    R. Kubitz, G. Sutfels, T. Kuhlkamp, R. Kolling, and D. Haussinger. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 126:541–553 (2004).PubMedGoogle Scholar
  128. 128.
    J. Noe, B. Hagenbuch, P. J. Meier, and M. V. St-Pierre. Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 33:1223–1231 (2001).PubMedGoogle Scholar
  129. 129.
    M. A. van Kuijck, M. Kool, G. F. Merkx, A. Geurts van Kessel, R. J. Bindels, P. M. Deen, and C. H. van Os. Assignment of the canalicular multispecific organic anion transporter gene (CMOAT) to human chromosome 10q24 and mouse chromosome 19D2 by fluorescent in situ hybridization. Cytogenet. Cell Genet. 77:285–287 (1997).PubMedGoogle Scholar
  130. 130.
    F. Lammert, D. E. Cohen, B. Paigen, M. C. Carey, and D. R. Beier. The gene encoding the multispecific organic anion transporter (Cmoat) of the hepatocyte canalicular membrane maps to mouse chromosome 19. Mamm. Genome. 9:87–88 (1998).PubMedGoogle Scholar
  131. 131.
    P. M. Gerkand M. Vore. Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J. Pharmacol. Exp. Ther. 302:407–415 (2002).PubMedGoogle Scholar
  132. 132.
    M. Niemi, K. A. Arnold, J. T. Backman, M. K. Pasanen, U. Godtel-Armbrust, L. Wojnowski, U. M. Zanger, P. J. Neuvonen, M. Eichelbaum, K. T. Kivisto, and T. Lang. Association of genetic polymorphism in ABCC2 with hepatic multidrug resistance-associated protein 2 expression and pravastatin pharmacokinetics. Pharmacogenet. Genomics. 16:801–808 (2006).PubMedCrossRefGoogle Scholar
  133. 133.
    A. Lindahl, A. Sjoberg, U. Bredberg, H. Toreson, A. L. Ungell, and H. Lennernas. Regional intestinal absorption and biliary excretion of fluvastatin in the rat: possible involvement of mrp2. Mol. Pharm. 1:347–356 (2004).PubMedGoogle Scholar
  134. 134.
    K. Ito, H. Suzuki, and Y. Sugiyama. Single amino acid substitution of rat MRP2 results in acquired transport activity for taurocholate. Am. J. Physiol. Gastrointest. Liver Physiol. 281:G1034–G1043 (2001).PubMedGoogle Scholar
  135. 135.
    R. O. Elferink and A. K. Groen. Genetic defects in hepatobiliary transport. Biochim. Biophys. Acta 1586:129–145 (2002).PubMedGoogle Scholar
  136. 136.
    J. A. Barnard and F. K. Ghishan. Taurocholate transport by human ileal brush border membrane vesicles. Gastroenterology 93:925–933 (1987).PubMedGoogle Scholar
  137. 137.
    S. L. Weinberg, G. Burckhardt, and F. A. Wilson. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system. J. Clin. Invest. 78:44–50 (1986).PubMedGoogle Scholar
  138. 138.
    W. A. Alrefai, Z. Sarwar, S. Tyagi, S. Saksena, P. K. Dudeja, and R. K. Gill. Cholesterol modulates human intestinal sodium-dependent bile acid transporter. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G978–G985 (2005).PubMedGoogle Scholar
  139. 139.
    P. A. Dawson, M. Hubbert, J. Haywood, A. L. Craddock, N. Zerangue, W. V. Christian, and N. Ballatori. The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J. Biol. Chem. 280:6960–6968 (2005).PubMedGoogle Scholar
  140. 140.
    A. Balakrishnan, D. J. Sussman, and J. E. Polli. Development of stably transfected monolayer overexpressing the human apical sodium-dependent bile acid transporter (hASBT). Pharm. Res. 22:1269–1280 (2005).PubMedGoogle Scholar
  141. 141.
    C. McClintock and Y. F. Shiau. Jejunum is more important than terminal ileum for taurocholate absorption in rats. Am. J. Physiol. 244:G507–G514 (1983).PubMedGoogle Scholar
  142. 142.
    M. H. Wong, P. Oelkers, A. L. Craddock, and P. A. Dawson. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J. Biol. Chem. 269:1340–1347 (1994).PubMedGoogle Scholar
  143. 143.
    M. H. Wong, P. Oelkers, and P. A. Dawson. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J. Biol. Chem. 270:27228–27234 (1995).PubMedGoogle Scholar
  144. 144.
    B. L. Shneider, P. A. Dawson, D. M. Christie, W. Hardikar, M. H. Wong, and F. J. Suchy. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J. Clin. Invest. 95:745–754 (1995).PubMedGoogle Scholar
  145. 145.
    W. Kramer, S. Stengelin, K. H. Baringhaus, A. Enhsen, H. Heuer, W. Becker, D. Corsiero, F. Girbig, R. Noll, and C. Weyland. Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. J. Lipid Res. 40:1604–1617 (1999).PubMedGoogle Scholar
  146. 146.
    T. Saeki, K. Matoba, H. Furukawa, K. Kirifuji, R. Kanamoto, and K. Iwami. Characterization, cDNA cloning, and functional expression of mouse ileal sodium-dependent bile acid transporter. J. Biochem. (Tokyo) 125:846–851 (1999).Google Scholar
  147. 147.
    M. H. Wong, P. N. Rao, M. J. Pettenati, and P. A. Dawson. Localization of the ileal sodium-bile acid cotransporter gene (SLC10A2) to human chromosome 13q33. Genomics 33:538–540 (1996).PubMedGoogle Scholar
  148. 148.
    B. L. Shneider, K. D. Setchell, and M. W. Crossman. Fetal and neonatal expression of the apical sodium-dependent bile acid transporter in the rat ileum and kidney. Pediatr. Res. 42:189–194 (1997).PubMedGoogle Scholar
  149. 149.
    S. Hallen, M. Branden, P. A. Dawson, and G. Sachs. Membrane insertion scanning of the human ileal sodium/bile acid co-transporter. Biochemistry 38:11379–11388 (1999).PubMedGoogle Scholar
  150. 150.
    A. Banerjee and P. W. Swaan. Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains. Biochemistry 45:943–953 (2006).PubMedGoogle Scholar
  151. 151.
    A. Q. Sun, M. Ananthanarayanan, C. J. Soroka, S. Thevananther, B. L. Shneider, and F. J. Suchy. Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. Am. J. Physiol. 275:G1045–G1055 (1998).PubMedGoogle Scholar
  152. 152.
    A. Q. Sun, R. Salkar, Sachchidanand, S. Xu, L. Zeng, M. M. Zhou, and F. J. Suchy. A 14-amino acid sequence with a beta-turn structure is required for apical membrane sorting of the rat ileal bile acid transporter. J. Biol. Chem. 278:4000–4009 (2003).PubMedGoogle Scholar
  153. 153.
    A. Banerjee, A. Ray, C. Chang, and P. W. Swaan. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry 44:8908–8917 (2005).PubMedGoogle Scholar
  154. 154.
    E. Y. Zhang, M. A. Phelps, A. Banerjee, C. M. Khantwal, C. Chang, F. Helsper, and P. W. Swaan. Topology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry 43:11380–11392 (2004).PubMedGoogle Scholar
  155. 155.
    W. Kramer, F. Girbig, H. Glombik, D. Corsiero, S. Stengelin, and C. Weyland. Identification of a ligand-binding site in the Na+/bile acid cotransporting protein from rabbit ileum. J. Biol. Chem. 276:36020–36027 (2001).PubMedGoogle Scholar
  156. 156.
    W. Kramer, K. Sauber, K. H. Baringhaus, M. Kurz, S. Stengelin, G. Lange, D. Corsiero, F. Girbig, W. Konig, and C. Weyland. Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure. J. Biol. Chem. 276:7291–7301 (2001).PubMedGoogle Scholar
  157. 157.
    N. Hussainzada, A. Banerjee, and P. W. Swaan. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway. Mol. Pharmacol. 70:1565–1574 (2006).PubMedGoogle Scholar
  158. 158.
    P. A. Dawson, J. Haywood, A. L. Craddock, M. Wilson, M. Tietjen, K. Kluckman, N. Maeda, and J. S. Parks. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J. Biol. Chem. 278:33920–33927 (2003).PubMedGoogle Scholar
  159. 159.
    B. G. Bhat, S. R. Rapp, J. A. Beaudry, N. Napawan, D. N. Butteiger, K. A. Hall, C. L. Null, Y. Luo, and B. T. Keller. Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE−/− mice by SC-435. J. Lipid Res. 44:1614–1621 (2003).PubMedGoogle Scholar
  160. 160.
    K. Kitayama, D. Nakai, K. Kono, A. G. van der Hoop, H. Kurata, E. C. de Wit, L. H. Cohen, T. Inaba, and T. Kohama. Novel non-systemic inhibitor of ileal apical Na+-dependent bile acid transporter reduces serum cholesterol levels in hamsters and monkeys. Eur. J. Pharmacol. 539:89–98 (2006).PubMedGoogle Scholar
  161. 161.
    P. Oelkers, L. C. Kirby, J. E. Heubi, and P. A. Dawson. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J. Clin. Invest. 99:1880–7 (1997).PubMedCrossRefGoogle Scholar
  162. 162.
    B. L. Shneider. Intestinal bile acid transport: biology, physiology, and pathophysiology. J. Pediatr. Gastroenterol. Nutr. 32:407–417 (2001).PubMedGoogle Scholar
  163. 163.
    D. Jung, M. Fried, and G. A. Kullak-Ublick. Human apical sodium-dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator-activated receptor alpha. J. Biol. Chem. 277:30559–30566 (2002).PubMedGoogle Scholar
  164. 164.
    F. Chen, L. Ma, N. Al-Ansari, and B. Shneider. The role of AP-1 in the transcriptional regulation of the rat apical sodium-dependent bile acid transporter. J. Biol. Chem. 276:38703–38714 (2001).PubMedGoogle Scholar
  165. 165.
    E. Neimark, F. Chen, X. Li, M. S. Magid, T. M. Alasio, T. Frankenberg, J. Sinha, P. A. Dawson, and B. L. Shneider. c-Fos is a critical mediator of inflammatory-mediated repression of the apical sodium-dependent bile acid transporter. Gastroenterology 131:554–567 (2006).PubMedGoogle Scholar
  166. 166.
    C. Thomas, J. F. Landrier, D. Gaillard, J. Grober, M. C. Monnot, A. Athias, and P. Besnard. Cholesterol-dependent down-regulation of mouse and human apical sodium-dependent bile acid transporter (ASBT) gene expression: molecular mechanism and physiological consequences. Gut 55(9):1321–1331 (2006).PubMedGoogle Scholar
  167. 167.
    W. A. Alrefai, F. Annaba, Z. Sarwar, A. Dwivedi, S. Saksena, A. Singla, P. K. Dudeja, and R. K. Gill. Modulation of human Niemann-Pick C1-like 1 gene expression by sterol: Role of sterol regulatory element binding protein 2. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G369–G376 (2007).PubMedGoogle Scholar
  168. 168.
    J. D. Horton, J. L. Goldstein, and M. S. Brown. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109:1125–1131 (2002).PubMedGoogle Scholar
  169. 169.
    M. B. Katanand A. C. Beynen. Characteristics of human hypo- and hyperresponders to dietary cholesterol. Am. J. Epidemiol. 125:387–399 (1987).PubMedGoogle Scholar
  170. 170.
    D. J. McNamara, R. Kolb, T. S. Parker, H. Batwin, P. Samuel, C. D. Brown, and E. H. Ahrens, Jr. Heterogeneity of cholesterol homeostasis in man. Response to changes in dietary fat quality and cholesterol quantity. J. Clin. Invest. 79:1729–1739 (1987).PubMedGoogle Scholar
  171. 171.
    M. Arrese, M. Trauner, R. J. Sacchiero, M. W. Crossman, and B. L. Shneider. Neither intestinal sequestration of bile acids nor common bile duct ligation modulate the expression and function of the rat ileal bile acid transporter. Hepatology 28:1081–1087 (1998).PubMedGoogle Scholar
  172. 172.
    A. Figge, F. Lammert, B. Paigen, A. Henkel, S. Matern, R. Korstanje, B. L. Shneider, F. Chen, E. Stoltenberg, K. Spatz, F. Hoda, D. E. Cohen, and R. M. Green. Hepatic overexpression of murine Abcb11 increases hepatobiliary lipid secretion and reduces hepatic steatosis. J. Biol. Chem. 279:2790–2799 (2004).PubMedGoogle Scholar
  173. 173.
    E. Neimark, F. Chen, X. Li, and B. L. Shneider. Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40:149–156 (2004).PubMedGoogle Scholar
  174. 174.
    F. Chen, L. Ma, P. A. Dawson, C. J. Sinal, E. Sehayek, F. J. Gonzalez, J. Breslow, M. Ananthanarayanan, and B. L. Shneider. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J. Biol. Chem. 278:19909–19916 (2003).PubMedGoogle Scholar
  175. 175.
    F. Chen, L. Ma, R. B. Sartor, F. Li, H. Xiong, A. Q. Sun, and B. Shneider. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation. Gastroenterology 123:2005–2016 (2002).PubMedGoogle Scholar
  176. 176.
    U. Sundaram, S. Wisel, S. Stengelin, W. Kramer, and V. Rajendran. Mechanism of inhibition of Na+-bile acid cotransport during chronic ileal inflammation in rabbits. Am. J. Physiol. 275:G1259–G1265 (1998).PubMedGoogle Scholar
  177. 177.
    M. J. Nowicki, B. L. Shneider, J. M. Paul, and J. E. Heubi. Glucocorticoids upregulate taurocholate transport by ileal brush-border membrane. Am. J. Physiol. 273:G197–G203 (1997).PubMedGoogle Scholar
  178. 178.
    J. E. Heubi and T. D. Gunn. The role of glucocorticoids in the postnatal development of ileal active bile salt transport. Pediatr. Res. 19:1147–1151 (1985).PubMedGoogle Scholar
  179. 179.
    D. Jung, A. C. Fantin, U. Scheurer, M. Fried, and G. A. Kullak-Ublick. Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut 53:78–84 (2004).PubMedGoogle Scholar
  180. 180.
    X. Chen, F. Chen, S. Liu, H. Glaeser, P. A. Dawson, A. F. Hofmann, R. B. Kim, B. L. Shneider, and K. S. Pang. Transactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1alpha,25-dihydroxyvitamin D3 via the vitamin D receptor. Mol. Pharmacol. 69:1913–1923 (2006).PubMedGoogle Scholar
  181. 181.
    I. Monteiro, E. S. David, and R. P. Ferraris. Ontogenetic development of rat intestinal bile acid transport requires thyroxine but not corticosterone. Pediatr. Res. 55:611–621 (2004).PubMedGoogle Scholar
  182. 182.
    A. D. Mottino, T. Hoffman, P. A. Dawson, M. G. Luquita, J. A. Monti, E. J. Sanchez Pozzi, V. A. Catania, J. Cao, and M. Vore. Increased expression of ileal apical sodium-dependent bile acid transporter in postpartum rats. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G41–G50 (2002).PubMedGoogle Scholar
  183. 183.
    A. Reymann, W. Braun, C. Drobik, and C. Woermann. Stimulation of bile acid active transport related to increased mucosal cyclic AMP content in rat ileum in vitro. Biochim. Biophys. Acta 1011:158–164 (1989).PubMedGoogle Scholar
  184. 184.
    J. H. Schlattjan, S. Benger, A. Herrler, U. von Rango, and J. Greven. Regulation of taurocholate transport in freshly isolated proximal tubular cells of the rat kidney by protein kinases. Nephron. Physiol. 99:35–42 (2005).Google Scholar
  185. 185.
    G. Alpini, S. Glaser, L. Baiocchi, H. Francis, X. Xia, and G. Lesage. Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology 41:1037–1045 (2005).PubMedGoogle Scholar
  186. 186.
    X. Xia, M. Roundtree, A. Merikhi, X. Lu, S. Shentu, and G. Lesage. Degradation of the apical sodium-dependent bile acid transporter by the ubiquitin-proteasome pathway in cholangiocytes. J. Biol. Chem. 279:44931–44937 (2004).PubMedGoogle Scholar
  187. 187.
    Z. Sarwar, R. K. Gill, A. Borthakur, K. Ramaswamy, P. K. Dudeja, G. Hecht, and W. A. Alrefai. Ileal Apical Bile Acid Transporter activity is inhibited by enteropathogenic E.Coli (EPEC) infection. Gastroenterology 130:A100 (2006).Google Scholar
  188. 188.
    W. A. Alrefai, Z. Sarwar, F. Annaba, S. Saksena, A. Dwivedi, P. K. Dudeja, and R. K. Gill. Evidence for the association of Apical Ileal Bile Acid Transporter (ASBT) with lipid rafts. Gastroenterology 130:A100 (2006).Google Scholar
  189. 189.
    H. C. Walters, A. L. Craddock, H. Fusegawa, M. C. Willingham, and P. A. Dawson. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am. J. Physiol. Gastrointest. Liver. Physiol. 279:G1188–G1200 (2000).PubMedGoogle Scholar
  190. 190.
    A. Amelsberg, C. Jochims, C. P. Richter, R. Nitsche, and U. R. Folsch. Evidence for an anion exchange mechanism for uptake of conjugated bile acid from the rat jejunum. Am. J. Physiol. 276:G737–G742 (1999).PubMedGoogle Scholar
  191. 191.
    M. C. Lin, W. Kramer, and F. A. Wilson. Identification of cytosolic and microsomal bile acid-binding proteins in rat ileal enterocytes. J. Biol. Chem. 265:14986–95 (1990).PubMedGoogle Scholar
  192. 192.
    G. P. Tochtrop, K. Richter, C. Tang, J. J. Toner, D. F. Covey, and D. P. Cistola. Energetics by NMR: site-specific binding in a positively cooperative system. Proc. Natl. Acad. Sci. U. S. A. 99:1847–1852 (2002).PubMedGoogle Scholar
  193. 193.
    O. Toke, J. D. Monsey, G. T. DeKoster, G. P. Tochtrop, C. Tang, and D. P. Cistola. Determinants of cooperativity and site selectivity in human ileal bile acid binding protein. Biochemistry 45:727–737 (2006).PubMedGoogle Scholar
  194. 194.
    I. Zaghini, J. F. Landrier, J. Grober, S. Krief, S. A. Jones, M. C. Monnot, I. Lefrere, M. A. Watson, J. L. Collins, H. Fujii, and P. Besnard. Sterol regulatory element-binding protein-1c is responsible for cholesterol regulation of ileal bile acid-binding protein gene in vivo. Possible involvement of liver-X-receptor. J. Biol. Chem. 277:1324–1331 (2002).PubMedGoogle Scholar
  195. 195.
    T. Kanda, L. Foucand, Y. Nakamura, I. Niot, P. Besnard, M. Fujita, Y. Sakai, K. Hatakeyama, T. Ono, and H. Fujii. Regulation of expression of human intestinal bile acid-binding protein in Caco-2 cells. Biochem. J. 330(Pt 1):261–265 (1998).PubMedGoogle Scholar
  196. 196.
    J. Grober, I. Zaghini, H. Fujii, S. A. Jones, S. A. Kliewer, T. M. Willson, T. Ono, and P. Besnard. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J. Biol. Chem. 274:29749–29754 (1999).PubMedGoogle Scholar
  197. 197.
    T. Kok, C. V. Hulzebos, H. Wolters, R. Havinga, L. B. Agellon, F. Stellaard, B. Shan, M. Schwarz, and F. Kuipers. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J. Biol. Chem. 278:41930–41937 (2003).PubMedGoogle Scholar
  198. 198.
    M. Nakahara, N. Furuya, K. Takagaki, T. Sugaya, K. Hirota, A. Fukamizu, T. Kanda, H. Fujii, and R. Sato. Ileal bile acid-binding protein, functionally associated with the farnesoid X receptor or the ileal bile acid transporter, regulates bile acid activity in the small intestine. J. Biol. Chem. 280:42283–42289 (2005).PubMedGoogle Scholar
  199. 199.
    J. F. Landrier, J. Grober, J. Demydchuk, and P. Besnard. FXRE can function as an LXRE in the promoter of human ileal bile acid-binding protein (I-BABP) gene. FEBS Lett. 553:299–303 (2003).PubMedGoogle Scholar
  200. 200.
    J. F. Landrier, C. Thomas, J. Grober, I. Zaghini, V. Petit, H. Poirier, I. Niot, and P. Besnard. The gene encoding the human ileal bile acid-binding protein (I-BABP) is regulated by peroxisome proliferator-activated receptors. Biochim. Biophys. Acta. 1735:41–49 (2005).PubMedGoogle Scholar
  201. 201.
    M. D. Halpern, H. Holubec, T. A. Saunders, K. Dvorak, J. A. Clark, S. M. Doelle, N. Ballatori, and B. Dvorak. Bile acids induce ileal damage during experimental necrotizing enterocolitis. Gastroenterology 130:359–372 (2006).PubMedGoogle Scholar
  202. 202.
    S. Sakamoto, H. Suzuki, H. Kusuhara, and Y. Sugiyama. Efflux mechanism of taurocholate across the rat intestinal basolateral membrane. Mol. Pharm. 3:275–281 (2006).PubMedGoogle Scholar
  203. 203.
    M. C. Lin, S. L. Weinberg, W. Kramer, G. Burckhardt, and F. A. Wilson. Identification and comparison of bile acid-binding polypeptides in ileal basolateral membrane. J. Membr. Biol. 106:1–11 (1988).PubMedGoogle Scholar
  204. 204.
    M. C. Lin, E. Mullady, and F. A. Wilson. Timed photoaffinity labeling and characterization of bile acid binding and transport proteins in rat ileum. Am. J. Physiol. 265:G56–G62 (1993).PubMedGoogle Scholar
  205. 205.
    W. Wang, D. J. Seward, L. Li, J. L. Boyer, and N. Ballatori. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc. Natl. Acad. Sci. U. S. A. 98:9431–9436 (2001).PubMedGoogle Scholar
  206. 206.
    D. J. Seward, A. S. Koh, J. L. Boyer, and N. Ballatori. Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. J. Biol. Chem. 278:27473–27482 (2003).PubMedGoogle Scholar
  207. 207.
    N. Ballatori, W. V. Christian, J. Y. Lee, P. A. Dawson, C. J. Soroka, J. L. Boyer, M. S. Madejczyk, and N. Li. OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:1270–1279 (2005).PubMedGoogle Scholar
  208. 208.
    J. F. Landrier, J. J. Eloranta, S. R. Vavricka, and G. A. Kullak-Ublick. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am. J. Physiol. Gastrointest. Liver. Physiol. 290:G476–G485 (2006).PubMedGoogle Scholar
  209. 209.
    M. Okuwaki, T. Takada, Y. Iwayanagi, S. Koh, Y. Kariya, H. Fujii, and H. Suzuki. LXR Alpha Transactivates Mouse Organic Solute Transporter Alpha and Beta via IR-1 Elements Shared with FXR. Pharm. Res. 24:390–398 (2007).PubMedGoogle Scholar
  210. 210.
    X. Xia, H. Francis, S. Glaser, G. Alpini, and G. LeSage. Bile acid interactions with cholangiocytes. World J. Gastroenterol. 12:3553–3563 (2006).PubMedGoogle Scholar
  211. 211.
    J. H. Schlattjan, C. Winter, and J. Greven. Regulation of renal tubular bile acid transport in the early phase of an obstructive cholestasis in the rat. Nephron. Physiol. 95:49–56 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Section of Digestive Diseases and Nutrition, Department of MedicineUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Medical Research Service (600/151)Jesse Brown V. A. Medical CenterChicagoUSA

Personalised recommendations