Pharmaceutical Research

, Volume 24, Issue 8, pp 1427–1440 | Cite as

Engineered Polyallylamine Nanoparticles for Efficient In Vitro Transfection

  • Atul Pathak
  • Anita Aggarwal
  • Raj K. Kurupati
  • Soma Patnaik
  • Archana Swami
  • Yogendra Singh
  • Pradeep Kumar
  • Suresh P. Vyas
  • Kailash C. Gupta
Research Paper



Cationic polymers (i.e. polyallylamine, poly-L-lysine) having primary amino groups are poor transfection agents and possess high cytotoxicity index when used without any chemical modification and usually entail specific receptor mediated endocytosis or lysosomotropic agents to execute efficient gene delivery. In this report, primary amino groups of polyallylamine (PAA, 17 kDa) were substituted with imidazolyl functions, which are presumed to enhance endosomal release, and thus enhance its gene delivery efficiency and eliminate the requirement of external lysosomotropic agents. Further, systems were cross-linked with polyethylene glycol (PEG) to prepare PAA-IAA-PEG (PIP) nanoparticles and evaluated them in various model cell lines.

Materials and Methods

The efficacy of PIP nanoparticles in delivering a plasmid encoding enhanced green fluorescent protein (EGFP) gene was assessed in COS-1, N2a and HEK293 cell lines, while their cytotoxicity was investigated in COS-1 and HEK293 cell lines. The PAA was chemically modified using imidazolyl moieties and ionically cross-linked with PEG to engineer nanoparticles. The extent of substitution was determined by ninhydrin method. The PIP nanoparticles were further characterized by measuring the particle size (dynamic light scattering and transmission electron microscopy), surface charge (zeta potential), DNA accessibility and buffering capacity. The cytotoxicity was examined using the MTT method.


In vitro transfection efficiency of synthesized nanoparticles is increased up to several folds compared to native polymer even in the presence of serum, while maintaining the cell viability over 100% in COS-1 cells. Nanoparticles possess positive zeta potential between 5.6–13 mV and size range of 185–230 nm in water. The accessibility experiment demonstrated that nanoparticles with higher degree of imidazolyl substitution formed relatively loose complexes with DNA. An acid-base titration showed enhanced buffering capacity of modified PAA.


The PIP nanoparticles reveal tremendous potential as novel delivery system for achieving improved transfection efficiency, while keeping the cells at ease.

Key words

buffering capacity DNA accessibility GFP imidazole acetic acid nanoparticles polyallylamine transfection 



The authors are thankful to Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow, India and NMR Laboratory, Indian Institute of Technology, Delhi for NMR analysis. Authors (AP, RKK, SP and AS) gratefully acknowledge the Indian Council for Medical Research (ICMR), the Council of Scientific and Industrial Research (CSIR) and the University Grant Commission (UGC), respectively, for providing financial support.


  1. 1.
    E. Piskin, S. Dincer, and M. Turk. Gene delivery: intelligent but just at the beginning. J. Biomater. Sci., Polym. Ed. 15:1181–1202 (2004).CrossRefGoogle Scholar
  2. 2.
    D. Luo and W. M. Saltzman. Synthetic DNA delivery systems. Nat. Biotechnol. 18:33–37 (2000).PubMedCrossRefGoogle Scholar
  3. 3.
    C. M. Cavazzana, S. B. Hacein, G. B. deSaint, F. Gross, E. Yvon, P. Nusbaum, P. Selz, C. Hue, S. Certain, J. L. Casanova, P. Bousso, F. L. Deist, and A. Fischer. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672 (2000).CrossRefGoogle Scholar
  4. 4.
    C. M. Liu, D. P. Liu, W. J. Dong, and C.-C. Liang. Retrovirus vector-mediated stable gene silencing in human cell. Biochem. Biophys. Res. Commun. 313:716–720 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    D. T. Curiel, S. Agrawal, E. Wagner, and M. Cotton. Adenovirus enhancement of transferrin-polylysine-mediated gene delivery. Proc. Natl. Acad. Sci. U.S.A. 88:8850–8854 (1991).CrossRefGoogle Scholar
  6. 6.
    A. Fasbender, J. Zabner, M. Chillon, T. O. Moninger, A. P. Puga, B. L. Davidson, and M. J. Welsh. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J. Biol. Chem. 272:6479–6489 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A. 84:7413–7417 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    M. A. Ilies, B. H. Johnson, F. Makori, A. Miller, W. A. Seitz, F. B. Thompson, and A. T. Balaban. Pyridinium cationic lipids in gene delivery: an in vitro and in vivo comparison of transfection efficiency versus a tetraalkylammonium congener. Arch. Biochem. Biophys. 435:217–226 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Simoes, A. Filipe, H. Faneca, M. Mano, N. Penacho, N. Duzgunes, and M. P. de Lima. Cationic liposomes for gene delivery. Expert Opin. Drug Deliv. 2:237–254 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    S. I. Kim, S. K. Lee, Y. M. Park, Y. B. Lee, S. C. Shin, K. C. Lee, and I. J. Oh. Physicochemical characterization of poly(l-lactic acid) and poly(d,l-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int. J. Pharm. 298:255–262 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    R. G. Crystal. Transfer of genes to human: early lessons and obstacles to success. Science 270:404–410 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 20:511–512 (1997).Google Scholar
  13. 13.
    S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt, M. P. McCormack, N. Wulffraat, P. Leboulch, A. Lim, C. S. Osborne, R. Pawliuk, E. Morillon, R. Sorensen, A. Forster, P. Fraser, J. I. Cohen, G. de Saint Basile, I. Alexander, U. Wintergerst, T. Frebourg, A. Aurias, D. Stoppa-Lyonnet, S. Romana, I. Radford-Weiss, F. Gross, F. Valensi, E. Delabesse, E. Macintyre, F. Sigaux, J. Soulier, L. E. Leiva, M. Wissler, C. Prinz, T. H. Rabbitts, F. Le Deist, A. Fischer, and M. Cavazzana-Calvo. LMO2-associated clonal T-cell proliferation in two patients after gene therapy for SCID-X1. Science 302:400–401(2003).CrossRefGoogle Scholar
  14. 14.
    J.-P. Behr. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia. 51:34–36 (1997).Google Scholar
  15. 15.
    P. Chollet, M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine–DNA complexes. J. Gene Med. 4:84–91(2002).PubMedCrossRefGoogle Scholar
  16. 16.
    W. T. Godbey, K. K. Wu, and A. G. Mikos. Poly(ethylenimine) and its role in gene delivery. J. Control. Release 60:149–160 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Nimesh, R. Kumar, and R. Chandra. Novel polyallylamine–dextran sulfate–DNA nanoplexes: highly efficient non-viral vector for gene delivery. Int. J. Pharm. 320:143–149 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    O. Boussif, T. Delair, C. Brua, L. Veron, A. Pavirani, and H. V. Kolbe, O. Synthesis of polyallylamine derivative and their use as a gene transfer vectors in vitro. Bioconjug. Chem. 10:877–883 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    Y. H. Choi, F. Liu, J. S. Kim, Y. K. Choi, J. S. Park, and S. W. Kim. Polyethylene glycol-grafted-polylysine as polymeric gene carriers. J. Control. Release 54:39–48 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    M. T. Peracchia, C. Vauthier, D. Desmaele, A. Gulik, C. Dedieu, M. demoy, J. Angelo, and P. Couvreur. Pegylated nanoparticles from a novel methoxypolyethylene-glycol cyanoacrylate-hexadecyl amphiphile copolymer. Pharm. Res. 15:550–556 (1990).CrossRefGoogle Scholar
  21. 21.
    C. H. Ahn, S. Y Chae, Y. H. Bae, and S. W. Kim. Synthesis of biodegradable multi-block copolymers of poly(L-lysine) and poly(ethylene glycol) as a non-viral gene carrier. J. Control. Release 97:567–574 (2004).PubMedGoogle Scholar
  22. 22.
    M. L. Forrest, G. E. Meister, J. T. Koerber, and D. W. Pack. Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res. 21:365–371 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    W. Tiyaboonchai, J. Woiszwillo, and C. R. Middaugh. Formulation and characterization of DNA–polyethyleneimine-dextran sulfate nanoparticles. Eur. J. Pharm. Sci. 19:191–202 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    M. L. Forrest, N. Gabrielson, and D. W. Pack. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng. 89:416–423(2005).PubMedCrossRefGoogle Scholar
  25. 25.
    D. J. Chen, B. S. Majors, A. Zelikin, and D. Putnam. Structure-function relationship of gene delivery vectors in a limited polycation library. J. Control. Release 103:273–293 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    D. W. Pack, D. Putnam, and R. Langer. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol. Bioeng. 67:217–223 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    R. M. Bello, and P. Midoux. Histidylated polylysine as DNA vector: elevation of the imidazole protonation and reduced cellular uptake without change in the polyfection efficiency of serum stabilized negative polyplexes. Bioconjug. Chem. 12:92–99 (2001).CrossRefGoogle Scholar
  28. 28.
    P. Dubruel, B. Christiaens, M. Rosseneu, J. Vandekerckhove, J. Grooten, V. Goossens, and E. Schacht. Buffering properties of cationic polymethacrylates are not the only key to successful gene delivery. Biomacromolecules 5:379–388 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    T. H. Kim, J. E. Ihm, Y. J. Choi, J. W. Nah, and C. S. Cho. Efficient gene delivery by urocanic acid-modified chitosan. J. Control. Release 93:389–402 (2003).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Swami, A. Aggarwal, A. Pathak, S. Patnaik, P. Kumar, Y. Singh, and K. C. Gupta. Imidazolyl-PEI modified nanoparticles for enhanced gene delivery. Int. J. Pharm. (2007) (In press).Google Scholar
  31. 31.
    J. Suh, H.-J. Paik, and B. K. Hwang. Ionization of Poly(ethylene) and Poly(allylamine) at various pH’s. Bioorg. Chem. 22:318–327 (1994).CrossRefGoogle Scholar
  32. 32.
    H. Eliyahu, A. Makovitzki, T. Azzam, A. Zlotkin, A. Joseph, D. Gazit, Y. Barenholz, and A. J. Domb. Novel dextran-spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers. Gene Ther. 12:494–503 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Nimesh, A. Goyal, V. Pawar, S. Jayaraman, P. Kumar, R. Chandra, Y. Singh, and K. C. Gupta. Polyethylenimine nanoparticles as efficient transfecting agents for mammalian cells. J. Control. Release 110:457–468 (2006).PubMedCrossRefGoogle Scholar
  34. 34.
    P.-Y. Yeh, P. Kopeckova, and J. Kopecek. Biodegradable and pH sensitive hydrogels: synthesis by crosslinking of N,N-dimethylacrylamide copolymer precursors. J. Polym. Sci., A, Polym. Chem. 32:1627–1637 (1994).CrossRefGoogle Scholar
  35. 35.
    D. Putnam, C. A. Gentry, D. W. Pack, and R. Langer. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. U.S.A. 98:1200–205 (2001).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Glodde, S. R. Sirsi, and G. J. Lutz. Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethyleneimine) copolymers and their complexes with oligonucleotides. Biomacromolecules 7:347–356 (2006).PubMedCrossRefGoogle Scholar
  37. 37.
    M. B. Roufai, and P. Midoux. Histidylated polylysine as DNA vector: elevation of the imidazole protonation and reduced cellular uptake without change in the polyfection efficiency of serum stabilized negative polyplexes. Bioconjug. Chem. 12:92–99 (2001).CrossRefGoogle Scholar
  38. 38.
    J. E. Ihm, Ki-Ok Han, C. S. Hwang, J. H. Kang, K.-D. Ahn, I.-K. Han, D. K. Han, J. A. Hubbell, and C.-S. Su. Poly (4-vinylimidazole) as nonviral gene carrier: in vitro and in vivo transfection. Acta Biomaterialia 1:165–172 (2005).PubMedCrossRefGoogle Scholar
  39. 39.
    E. S. Lee, H. J. Shin, K. Na, and Y. H. Bae. Poly (L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release 90:363–374 (2003).PubMedCrossRefGoogle Scholar
  40. 40.
    S. Patnaik, A. Aggarwal, A. Goel, M. Ganguli, N. Saini, Y. Singh, and K. C.Gupta. PEI-alginate nanocomposites as efficient in vitro gene transfection agents. J. Control. Release 114:398–409 (2006).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Koping-Hoggard, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K. M. Varum, and P. Artursson. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 8:1108–1121 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Atul Pathak
    • 1
  • Anita Aggarwal
    • 1
  • Raj K. Kurupati
    • 1
  • Soma Patnaik
    • 1
  • Archana Swami
    • 1
  • Yogendra Singh
    • 1
  • Pradeep Kumar
    • 1
  • Suresh P. Vyas
    • 2
  • Kailash C. Gupta
    • 1
  1. 1.Institute of Genomics and Integrative BiologyDelhi University CampusDelhiIndia
  2. 2.Department of Pharmaceutical SciencesDr. Harisingh Gour UniversitySagarIndia

Personalised recommendations