Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Engineered Polyallylamine Nanoparticles for Efficient In Vitro Transfection

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

This article was retracted on 03 December 2020

This article has been updated

Abstract

Purpose

Cationic polymers (i.e. polyallylamine, poly-L-lysine) having primary amino groups are poor transfection agents and possess high cytotoxicity index when used without any chemical modification and usually entail specific receptor mediated endocytosis or lysosomotropic agents to execute efficient gene delivery. In this report, primary amino groups of polyallylamine (PAA, 17 kDa) were substituted with imidazolyl functions, which are presumed to enhance endosomal release, and thus enhance its gene delivery efficiency and eliminate the requirement of external lysosomotropic agents. Further, systems were cross-linked with polyethylene glycol (PEG) to prepare PAA-IAA-PEG (PIP) nanoparticles and evaluated them in various model cell lines.

Materials and Methods

The efficacy of PIP nanoparticles in delivering a plasmid encoding enhanced green fluorescent protein (EGFP) gene was assessed in COS-1, N2a and HEK293 cell lines, while their cytotoxicity was investigated in COS-1 and HEK293 cell lines. The PAA was chemically modified using imidazolyl moieties and ionically cross-linked with PEG to engineer nanoparticles. The extent of substitution was determined by ninhydrin method. The PIP nanoparticles were further characterized by measuring the particle size (dynamic light scattering and transmission electron microscopy), surface charge (zeta potential), DNA accessibility and buffering capacity. The cytotoxicity was examined using the MTT method.

Results

In vitro transfection efficiency of synthesized nanoparticles is increased up to several folds compared to native polymer even in the presence of serum, while maintaining the cell viability over 100% in COS-1 cells. Nanoparticles possess positive zeta potential between 5.6–13 mV and size range of 185–230 nm in water. The accessibility experiment demonstrated that nanoparticles with higher degree of imidazolyl substitution formed relatively loose complexes with DNA. An acid-base titration showed enhanced buffering capacity of modified PAA.

Conclusions

The PIP nanoparticles reveal tremendous potential as novel delivery system for achieving improved transfection efficiency, while keeping the cells at ease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Change history

References

  1. E. Piskin, S. Dincer, and M. Turk. Gene delivery: intelligent but just at the beginning. J. Biomater. Sci., Polym. Ed.15:1181–1202 (2004).

    Article  CAS  Google Scholar 

  2. D. Luo and W. M. Saltzman. Synthetic DNA delivery systems. Nat. Biotechnol.18:33–37 (2000).

    Article  CAS  Google Scholar 

  3. C. M. Cavazzana, S. B. Hacein, G. B. deSaint, F. Gross, E. Yvon, P. Nusbaum, P. Selz, C. Hue, S. Certain, J. L. Casanova, P. Bousso, F. L. Deist, and A. Fischer. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science288:669–672 (2000).

    Article  Google Scholar 

  4. C. M. Liu, D. P. Liu, W. J. Dong, and C.-C. Liang. Retrovirus vector-mediated stable gene silencing in human cell. Biochem. Biophys. Res. Commun.313:716–720 (2004).

    Article  CAS  Google Scholar 

  5. D. T. Curiel, S. Agrawal, E. Wagner, and M. Cotton. Adenovirus enhancement of transferrin-polylysine-mediated gene delivery. Proc. Natl. Acad. Sci. U.S.A.88:8850–8854 (1991).

    Article  CAS  Google Scholar 

  6. A. Fasbender, J. Zabner, M. Chillon, T. O. Moninger, A. P. Puga, B. L. Davidson, and M. J. Welsh. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J. Biol. Chem.272:6479–6489 (1997).

    Article  CAS  Google Scholar 

  7. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A.84:7413–7417 (1987).

    Article  CAS  Google Scholar 

  8. M. A. Ilies, B. H. Johnson, F. Makori, A. Miller, W. A. Seitz, F. B. Thompson, and A. T. Balaban. Pyridinium cationic lipids in gene delivery: an in vitro and in vivo comparison of transfection efficiency versus a tetraalkylammonium congener. Arch. Biochem. Biophys.435:217–226 (2005).

    Article  CAS  Google Scholar 

  9. S. Simoes, A. Filipe, H. Faneca, M. Mano, N. Penacho, N. Duzgunes, and M. P. de Lima. Cationic liposomes for gene delivery. Expert Opin. Drug Deliv.2:237–254 (2005).

    Article  CAS  Google Scholar 

  10. S. I. Kim, S. K. Lee, Y. M. Park, Y. B. Lee, S. C. Shin, K. C. Lee, and I. J. Oh. Physicochemical characterization of poly(l-lactic acid) and poly(d,l-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int. J. Pharm.298:255–262 (2005).

    Article  CAS  Google Scholar 

  11. R. G. Crystal. Transfer of genes to human: early lessons and obstacles to success. Science270:404–410 (1995).

    Article  CAS  Google Scholar 

  12. P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther.20:511–512 (1997).

    Article  Google Scholar 

  13. S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt, M. P. McCormack, N. Wulffraat, P. Leboulch, A. Lim, C. S. Osborne, R. Pawliuk, E. Morillon, R. Sorensen, A. Forster, P. Fraser, J. I. Cohen, G. de Saint Basile, I. Alexander, U. Wintergerst, T. Frebourg, A. Aurias, D. Stoppa-Lyonnet, S. Romana, I. Radford-Weiss, F. Gross, F. Valensi, E. Delabesse, E. Macintyre, F. Sigaux, J. Soulier, L. E. Leiva, M. Wissler, C. Prinz, T. H. Rabbitts, F. Le Deist, A. Fischer, and M. Cavazzana-Calvo. LMO2-associated clonal T-cell proliferation in two patients after gene therapy for SCID-X1. Science302:400–401(2003).

    Article  Google Scholar 

  14. J.-P. Behr. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia.51:34–36 (1997).

    CAS  Google Scholar 

  15. P. Chollet, M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine–DNA complexes. J. Gene Med.4:84–91(2002).

    Article  Google Scholar 

  16. W. T. Godbey, K. K. Wu, and A. G. Mikos. Poly(ethylenimine) and its role in gene delivery. J. Control. Release60:149–160 (1999).

    Article  CAS  Google Scholar 

  17. S. Nimesh, R. Kumar, and R. Chandra. Novel polyallylamine–dextran sulfate–DNA nanoplexes: highly efficient non-viral vector for gene delivery. Int. J. Pharm.320:143–149 (2006).

    Article  CAS  Google Scholar 

  18. O. Boussif, T. Delair, C. Brua, L. Veron, A. Pavirani, and H. V. Kolbe, O. Synthesis of polyallylamine derivative and their use as a gene transfer vectors in vitro. Bioconjug. Chem.10:877–883 (1999).

    Article  CAS  Google Scholar 

  19. Y. H. Choi, F. Liu, J. S. Kim, Y. K. Choi, J. S. Park, and S. W. Kim. Polyethylene glycol-grafted-polylysine as polymeric gene carriers. J. Control. Release54:39–48 (1998).

    Article  Google Scholar 

  20. M. T. Peracchia, C. Vauthier, D. Desmaele, A. Gulik, C. Dedieu, M. demoy, J. Angelo, and P. Couvreur. Pegylated nanoparticles from a novel methoxypolyethylene-glycol cyanoacrylate-hexadecyl amphiphile copolymer. Pharm. Res.15:550–556 (1990).

    Article  Google Scholar 

  21. C. H. Ahn, S. Y Chae, Y. H. Bae, and S. W. Kim. Synthesis of biodegradable multi-block copolymers of poly(L-lysine) and poly(ethylene glycol) as a non-viral gene carrier. J. Control. Release97:567–574 (2004).

    CAS  PubMed  Google Scholar 

  22. M. L. Forrest, G. E. Meister, J. T. Koerber, and D. W. Pack. Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res.21:365–371 (2004).

    Article  CAS  Google Scholar 

  23. W. Tiyaboonchai, J. Woiszwillo, and C. R. Middaugh. Formulation and characterization of DNA–polyethyleneimine-dextran sulfate nanoparticles. Eur. J. Pharm. Sci.19:191–202 (2003).

    Article  CAS  Google Scholar 

  24. M. L. Forrest, N. Gabrielson, and D. W. Pack. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng.89:416–423(2005).

    Article  CAS  Google Scholar 

  25. D. J. Chen, B. S. Majors, A. Zelikin, and D. Putnam. Structure-function relationship of gene delivery vectors in a limited polycation library. J. Control. Release103:273–293 (2005).

    Article  CAS  Google Scholar 

  26. D. W. Pack, D. Putnam, and R. Langer. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol. Bioeng.67:217–223 (2000).

    Article  CAS  Google Scholar 

  27. R. M. Bello, and P. Midoux. Histidylated polylysine as DNA vector: elevation of the imidazole protonation and reduced cellular uptake without change in the polyfection efficiency of serum stabilized negative polyplexes. Bioconjug. Chem.12:92–99 (2001).

    Article  Google Scholar 

  28. P. Dubruel, B. Christiaens, M. Rosseneu, J. Vandekerckhove, J. Grooten, V. Goossens, and E. Schacht. Buffering properties of cationic polymethacrylates are not the only key to successful gene delivery. Biomacromolecules5:379–388 (2004).

    Article  CAS  Google Scholar 

  29. T. H. Kim, J. E. Ihm, Y. J. Choi, J. W. Nah, and C. S. Cho. Efficient gene delivery by urocanic acid-modified chitosan. J. Control. Release93:389–402 (2003).

    Article  CAS  Google Scholar 

  30. A. Swami, A. Aggarwal, A. Pathak, S. Patnaik, P. Kumar, Y. Singh, and K. C. Gupta. Imidazolyl-PEI modified nanoparticles for enhanced gene delivery. Int. J. Pharm. (2007) (In press).

  31. J. Suh, H.-J. Paik, and B. K. Hwang. Ionization of Poly(ethylene) and Poly(allylamine) at various pH’s. Bioorg. Chem.22:318–327 (1994).

    Article  CAS  Google Scholar 

  32. H. Eliyahu, A. Makovitzki, T. Azzam, A. Zlotkin, A. Joseph, D. Gazit, Y. Barenholz, and A. J. Domb. Novel dextran-spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers. Gene Ther.12:494–503 (2005).

    Article  CAS  Google Scholar 

  33. S. Nimesh, A. Goyal, V. Pawar, S. Jayaraman, P. Kumar, R. Chandra, Y. Singh, and K. C. Gupta. Polyethylenimine nanoparticles as efficient transfecting agents for mammalian cells. J. Control. Release110:457–468 (2006).

    Article  CAS  Google Scholar 

  34. P.-Y. Yeh, P. Kopeckova, and J. Kopecek. Biodegradable and pH sensitive hydrogels: synthesis by crosslinking of N,N-dimethylacrylamide copolymer precursors. J. Polym. Sci., A, Polym. Chem.32:1627–1637 (1994).

    Article  CAS  Google Scholar 

  35. D. Putnam, C. A. Gentry, D. W. Pack, and R. Langer. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. U.S.A.98:1200–205 (2001).

    Article  CAS  Google Scholar 

  36. M. Glodde, S. R. Sirsi, and G. J. Lutz. Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethyleneimine) copolymers and their complexes with oligonucleotides. Biomacromolecules7:347–356 (2006).

    Article  CAS  Google Scholar 

  37. M. B. Roufai, and P. Midoux. Histidylated polylysine as DNA vector: elevation of the imidazole protonation and reduced cellular uptake without change in the polyfection efficiency of serum stabilized negative polyplexes. Bioconjug. Chem.12:92–99 (2001).

    Article  Google Scholar 

  38. J. E. Ihm, Ki-Ok Han, C. S. Hwang, J. H. Kang, K.-D. Ahn, I.-K. Han, D. K. Han, J. A. Hubbell, and C.-S. Su. Poly (4-vinylimidazole) as nonviral gene carrier: in vitro and in vivo transfection. Acta Biomaterialia1:165–172 (2005).

    Article  Google Scholar 

  39. E. S. Lee, H. J. Shin, K. Na, and Y. H. Bae. Poly (L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release90:363–374 (2003).

    Article  CAS  Google Scholar 

  40. S. Patnaik, A. Aggarwal, A. Goel, M. Ganguli, N. Saini, Y. Singh, and K. C.Gupta. PEI-alginate nanocomposites as efficient in vitro gene transfection agents. J. Control. Release114:398–409 (2006).

    Article  CAS  Google Scholar 

  41. M. Koping-Hoggard, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K. M. Varum, and P. Artursson. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther.8:1108–1121 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow, India and NMR Laboratory, Indian Institute of Technology, Delhi for NMR analysis. Authors (AP, RKK, SP and AS) gratefully acknowledge the Indian Council for Medical Research (ICMR), the Council of Scientific and Industrial Research (CSIR) and the University Grant Commission (UGC), respectively, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash C. Gupta.

About this article

Cite this article

Pathak, A., Aggarwal, A., Kurupati, R.K. et al. RETRACTED ARTICLE: Engineered Polyallylamine Nanoparticles for Efficient In Vitro Transfection. Pharm Res 24, 1427–1440 (2007). https://doi.org/10.1007/s11095-007-9259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9259-7

Key words

Navigation