Skip to main content
Log in

Miniaturized Assay for Solubility and Residual Solid Screening (SORESOS) in Early Drug Development

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim was to develop a miniaturized method for solubility and residual solid screening of drug compounds in aqueous and non-aqueous vehicles in early drug development.

Methods

Different crystal modifications of caffeine, carbamazepine, and piroxicam were added into 96-well filter plates and solubility was determined in 100 μl of 17 pharmaceutical vehicles. After filtration, drug concentration was determined by Ultra Performance Liquid Chromatography™ (UPLC). Residual solid drug in the filter plates was analyzed by high-throughput (HT) transmission X-ray Powder Diffraction (XRPD).

Results

HT XRPD analysis revealed solid form conversions of all compounds during solubility determination, e.g., formation of hydrates in aqueous vehicles (caffeine, carbamazepine, piroxicam) or conversion of a metastable crystal form to the stable form (caffeine). Drug solubility was strongly dependent on the crystal modifications formed during the solubility assay.

Conclusions

The new assay allows the simultaneous, small scale screening of drug solubility in various pharmaceutical vehicles and identification of changes in solid form. It is useful for the identification of formulations and formulation options in non-clinical and clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAF:

caffeine

CBZ:

carbamazepine

DSC:

differential scanning calorimetry

FaSSIF:

fasted state simulated intestinal fluid

FeSSIF:

fed state simulated intestinal fluid

FT-IR:

Fourier Transform IR spectroscopy

Mixed micelles (200 mM G/L):

aqueous vehicle containing 200 mM glycocholic acid and 200 mM lecithin

PCTE:

polycarbonate, track-edged

PXM:

piroxicam

SGF:

simulated gastric fluid

SORESOS:

solubility and residual solid screening

TGA:

thermo gravimetric analysis

UPLC:

Ultra Performance Liquid Chromatography™

XRPD:

X-ray Powder Diffraction

References

  1. S. Venkatesh and R. A. Lipper. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89:145–154 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. G. W. Caldwell, D. M. Ritchie, J. A. Masucci, W. Hageman, and Z. Yan. The new pre-clinical paradigm: compound optimization in early and late phase drug discovery. Curr. Topics Med. Chem. 1:353–366 (2001).

    Article  CAS  Google Scholar 

  3. E. H. Kerns. High throughput physicochemical profiling for drug discovery. J. Pharm. Sci. 90:1838–1858 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. S. Balbach and C. Korn. Pharmaceutical evaluation of early development candidates “the 100 mg-approach.” Int. J. Pharm. 275:1–12 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. H. Chen, Z. Zhang, C. McNulty, C. Olbert, H. J. Yoon, J. W. Lee, S. C. Kim, M. H. Seo, H. S. Oh, A. V. Lemmo, S. J. Ellis, and K. Heimlich. A high-throughput combinatorial approach for the discovery of a cremophor EL-free paclitaxel formulation. Pharm. Res. 20:1302–1308 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. X.-Q. Chen and S. Venkatesh. Miniature device for aqueous and non-aqueous solubility measurements during drug discovery. Pharm. Res. 21:1758–1761 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. J. Alsenz, E. Meister, and E. Haenel. Development of a partially automated solubility screening (PASS) assay for early drug development. J. Pharm. Sci. 96:1–15 (2007).

    Article  Google Scholar 

  8. M. E. Swartz. UPLC™: An introduction and review. J. Liquid Chromatogr. Relat. Technol. 28:1253–1263 (2005).

    CAS  Google Scholar 

  9. L. Nováková, L. Matysová, and P. Solich. Advantages of application of UPLC in pharmaceutical analysis. Talanta 68:908–918 (2006).

    Article  Google Scholar 

  10. A. Bauer-Brandl. Polymorphic transitions of cimetidine during manufacture of solid dosage forms. Int. J. Pharm. 140:195–206 (1996).

    Article  CAS  Google Scholar 

  11. G. W. Lu, M. Hawley, M. Smith, B. M. Geiger, and W. Pfund. Characterization of a novel polymorphic form of Celecoxib. J. Pharm. Sci. 95:305–317 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. S. R. Vippagunta, H. G. Brittain, and D. J. W. Grant. Crystalline solids. Adv. Drug. Del. Rev. 48:3–26 (2001).

    Article  CAS  Google Scholar 

  13. C. R. Gardner, C. T. Walsh, and Ö. Almarsson. Drugs as materials: valuing physical form in drug discovery. Nature Reviews. Drug Discovery 3:926–934 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. M. L. Peterson, S. L. Morissette, C. McNulty, A. Goldsweig, P. Shaw, M. LeQuesne, J. Monagle, N. Encina. J. Marchionna, A. Johnson, J. Gonzalez-Zugasti, A. V. Lemmo, S. J. Ellis, M. J. Cima, and Ö. Almarsson. Iterative high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III. J. Am. Chem. Soc. 124:10958–10959 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. De Paul, B. Freiermuth, A. Geoffroy. U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. von Raumer. Polymorphism—integrated approach from high-throughput screening to crystallization optimization. J. Therm. Anal. Cal. 73:429–440 (2003).

    Article  CAS  Google Scholar 

  16. P. J. Desrosiers. The potential of preform. Mod. Drug Discov. 7:40–43 (2004).

    CAS  Google Scholar 

  17. R. Storey, R. Docherty, P. Higginson, C. Dallman, C. Gilmore, G. Barr, and W. Dong. Automation of solid form screening procedures in the pharmaceutical industry—how to avoid the bottlenecks. Cryst. Rev. 10:45–56 (2004).

    Article  CAS  Google Scholar 

  18. S. E. Rasmussen. Relative merits of reflection and transmission techniques in laboratory powder diffraction. Powder Diffr. 18:281–284 (2003).

    Article  CAS  Google Scholar 

  19. A. J. Florence, B. Baumgartner, C. Weston, N. Shankland, A. R. Kennedy, K. Shankland, and W. I. F. David. Indexing powder patterns in physical form screening: instrumentation and data quality. J. Pharm. Sci. 92:1930–1938 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. V.-P. Lehto and E. Laine. A kinetic study of polymorphic transition of anhydrous caffeine with microcalorimeter. Thermochim. Acta 317:47–58 (1998).

    Article  CAS  Google Scholar 

  21. F. U. Krahn and J. B. Mielck. Relations between several polymorphic forms and the dihydrate of carbamazepine. Pharm. Acta Helv. 62:247–254 (1987).

    PubMed  CAS  Google Scholar 

  22. R. J. Behme and D. Brooke. Heat of fusion measurement of a low melting polymorph of carbamazepine that undergoes multiple-phase changes during differential scanning calorimetry analysis. J. Pharm. Sci. 80:986–990 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. F. Vrecer, S. Srcic, and J. Smid-Korbar. Investigation of piroxicam polymorphism. Int. J. Pharm. 68:35–41(1991).

    Article  CAS  Google Scholar 

  24. A. R. Sheth, S. Bates, F. X. Muller, and D. J. W. Grant. Polymorphism in Piroxicam. Cryst. Growth Des. 4:1091–1098 (2004).

    Article  CAS  Google Scholar 

  25. E. Galia, J. Horton, and J. B. Dressman. Albendazole Generics—a comparative in vitro study. Pharm. Res. 16:1871–1875 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. E. Galia, E. Nicolaides, C. Reppas, and J. B. Dressman. New media discriminate dissolution of poorly soluble drugs. Pharm. Res. 13:S-262 (1996).

    Google Scholar 

  27. K. Teelmann, B. Schläppi, M. Schüpbach, and A. Kistler. Preclinical safety evaluation of intravenously administered mixed micelles. Arzneim.-Forsch./Drug Res. 34:1517–1523 (1984).

    CAS  Google Scholar 

  28. C. Lefebvre, A. M. Guyot-Hermann, M. Draguet-Brughmans, R. Bouché, and J. C. Guyot. Polymorphic transitions of carbamazepine during grinding and compression. Drug Dev. Ind. Pharm. 12:1913–1927 (1986).

    CAS  Google Scholar 

  29. H. Bothe and H. K. Cammenga. Composition, properties, stability and thermal dehydration of crystalline caffeine hydrate. Thermochim. Acta 40:29–39 (1980).

    Article  CAS  Google Scholar 

  30. U. J. Griesser and A. Burger. The effect of water vapor pressure on desolvation kinetics of caffeine 4/5 hydrate. Int. J. Pharm. 120:83–93 (1995).

    Article  CAS  Google Scholar 

  31. A. Jorgensen, J. Rantanen, M. Karjalainen, L. Khriachtchev, E. Räsänen, and J. Yliruusi. Hydrate formation during wet granulation studied by spectroscopic methods and multivariante analysis. Pharm. Res. 19:1285–1291 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. A. L. Grzesiak, M. Lang, K. Kim, and A. J. Matzger. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J. Pharm Sci. 92:2260–2271 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. M. Lang, J. W. Kampf, and A. J. Matzger. Form IV of carbamazepine. J. Pharm. Sci. 91:1186–1190 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. V. L. Himes, A. D. Mighell, and W. H. De Camp. Structure of Carbamazepine: 5H-Dibenz[b,f]azepine-5-carboxamide. Acta Cryst. B37:2242–2245 (1981).

    CAS  Google Scholar 

  35. M. M. J. Lowes, M. R. Caira, A. P. Lötter, and J. G. Van Der Watt. Physicochemical properties and X-ray structural studies of the trigonal polymorph of carbamazepine. J. Pharm. Sci. 76:744–752 (1987).

    Article  PubMed  CAS  Google Scholar 

  36. L. E. McMahon, P. Timmins, A. C. Williams, and P. York. Characterization of dihydrates prepared from carbamazepine polymorphs. J. Pharm. Sci. 85:1064–1069 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. G. Reck and G. Dietz. The order-disorder structure of carbamazepine dihydrate: 5H-dibenz[b,f]azepine-5-carboxamide dihydrate, C15H12N2O.2 H2O. Cryst. Res. Technol. 21:1463–1468 (1986).

    Article  CAS  Google Scholar 

  38. F. Kozjek and L. Golic. Physico-chemical properties and bioavailability of two crystal forms of piroxicam. Acta Pharm. Jugosl. 35:275–281 (1985).

    CAS  Google Scholar 

  39. F. Vrecer, M. Vrbinc, and A. Meden. Characterization of piroxicam crystal modifications. Int. J. Pharm. 256:3–15 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. D. Roy, F. Ducher, A. Laumain, and J. Y. Legendre. Determination of the aqueous solubility of drugs using a convenient 96-well plate-based assay. Drug Dev. Ind. Pharm. 27:107–109 (2001).

    Article  PubMed  Google Scholar 

  41. M. Yazdanian, K. Briggs, C. Jankovsky, and A. Hawi. The “High Solubility” definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm. Res. 21:293–299 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. K. Obata, K. Sugano, M. Machida, and Y. Aso. Biopharmaceutics classification by high throughput solubility assay and PAMPA. Drug Dev. Ind. Pharm. 30:181–185 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. R.-K. Chang and A. H. Shojaei. Effect of hydroxypropyl β-cyclodextrin on drug solubility in water-propylene glycol mixtures. Drug Dev. Ind. Pharm. 30:297–302 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. M. Pudipeddi and A. T. M. Serajuddin. Trends in solubility of polymorphs. J. Pharm. Sci. 94:929–939 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. J. I. Langford. Line profile analysis: a historical overview. Springer Ser. Mat. Sci. 68:3–13 (2004).

    CAS  Google Scholar 

  46. F. M. Andersen and H. Bundgaard. Inclusion complexation of metronidazole benzoate with β-cyclodextrin and its depression of anhydrate-hydrate transition in aqueous suspension. Int. J. Pharm. 19:189–197 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Annunziato Raso for UPLC measurements, Dorothea Held and Sabine Schwarz for standard XRPD analyses, and André Bubendorf for IR spectroscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Wyttenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyttenbach, N., Alsenz, J. & Grassmann, O. Miniaturized Assay for Solubility and Residual Solid Screening (SORESOS) in Early Drug Development. Pharm Res 24, 888–898 (2007). https://doi.org/10.1007/s11095-006-9205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9205-0

Key words

Navigation