Pharmaceutical Research

, Volume 24, Issue 4, pp 780–790 | Cite as

Improved Protocol and Data Analysis for Accelerated Shelf-Life Estimation of Solid Dosage Forms

  • Kenneth C. Waterman
  • Anthony J. Carella
  • Michael J. Gumkowski
  • Patrick Lukulay
  • Bruce C. MacDonald
  • Michael C. Roy
  • Sheri L. Shamblin
Research Paper



To propose and test a new accelerated aging protocol for solid-state, small molecule pharmaceuticals which provides faster predictions for drug substance and drug product shelf-life.

Materials and Methods

The concept of an isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a critical degradant level, is introduced for solid-state pharmaceuticals. Reliable estimates for temperature and relative humidity effects are handled using a humidity-corrected Arrhenius equation, where temperature and relative humidity are assumed to be orthogonal. Imprecision is incorporated into a Monte-Carlo simulation to propagate the variations inherent in the experiment. In early development phases, greater imprecision in predictions is tolerated to allow faster screening with reduced sampling. Early development data are then used to design appropriate test conditions for more reliable later stability estimations.


Examples are reported showing that predicted shelf-life values for lower temperatures and different relative humidities are consistent with the measured shelf-life values at those conditions.


The new protocols and analyses provide accurate and precise shelf-life estimations in a reduced time from current state of the art.

Key words

accelerated aging shelf-life stability 



The authors would like to acknowledge the assistance of Dr. Julie Lorenz for her helpful discussions and suggestions. The authors would also like to acknowledge the assistance of Yan Liu, Shilpa Naik and Yukun Ren, each of whom contributed to the programming of the Monte-Carlo simulation.


  1. 1.
    K. C. Waterman, and R. C. Adami. Accelerated aging: prediction of chemical stability of pharmaceuticals. Int. J. Pharm. 293:101–125 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    F. J. Urban, V. J. Jasys, J. W. Raggon, R. A. Buzon, P. D. Hill, J. F. Eggler, and J. D. Weaver. Novel synthesis of 1-(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)-3-[4-(1-hydroxy-1-methylethyl)furan-2-sulfonyl]urea, an antiinflammatory agent. Synth. Comm. 33(12):2029–2043 (2003).CrossRefGoogle Scholar
  3. 3.
    B. Li, B. Andresen, M. F. Brown, R. A. Buzon, C. K.-F. Chiu, M. Couturier, E. Dias, F. J. Urban, V. J. Jasys, J. C. Kath, W. Kissel, T. Le, Z. J. Li, J. Negri, C. S. Poss, J. Tucker, D. Whritenour, and K. Zandi. Process development of CP-481715, a novel CCR1 antagonist. Org. Proc. Res. Dev. 9(4):466–471 (2005).CrossRefGoogle Scholar
  4. 4.
    D. T. Friesen, M. J. Gumkowski, R. J. Ketner, D. A. Lorenz, J. A. S. Nightingale, R. M. Shanker, and J. B. West. Pharmaceutical compositions of dispersions of drugs and neutral polymers. Int. Patent Appl. WO 2003000235A1 (2003) p. 210.Google Scholar
  5. 5.
    M. M Hayward. Preparation of [(2-piperazinyl-2-oxoethoxy)phenyl]alkanesulfonic acids and analogs as CCR1 receptor antagonists for treatment of inflammation and immune disorders. Int. Patent Appl. WO2002102787A2, p. 44 (2002).Google Scholar
  6. 6.
    M. F. Brown, A. S. Gaweco, R. P. Gladue, and M. M. Hayward. Preparation of piperazine sulfonic acid derivatives as chemokine receptors CCR1 antagonists for the treatment of fibrosis, Alzheimer disease and other disorders Int. Patent Appl. WO2004039377A1, p. 56 (2004).Google Scholar
  7. 7.
    U. Kaufmann. Preparation of piperazine derivatives as CCR1 antagonists for the treatment of endometriosis. Int. Patent Appl. WO2005079769A2 pp. 291 (2005).Google Scholar
  8. 8.
    K. M. Alsante, P. Boutros, M. A. Couturier, R. C. Friedmann, J. W. Harwood, G. J. Horan, A. J. Jensen, Q. Liu, L. L. Lohr, R. Morris, J. W. Raggon, G. L. Reid, D. P. Santafianos, T. R. Sharp, J. L. Tucker, and G. E. Wilcox. Pharmaceutical impurity identification: A case study using a multidisciplinary approach. J. Pharm.Sci. 93(9):2296–2309 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Vlase, G. Vlase, and N. Doca. Thermal stability of food additives of glutamate and benzoate type. J. Therm. Anal. Calor. 80(2):425–428 (2005).CrossRefGoogle Scholar
  10. 10.
    G. T. Long, S. Vyazovkin, N. Gamble, and C. A. Wight. Hard to swallow dry: kinetics and mechanism of the anhydrous thermal decomposition of acetylsalicylic acid. J. Pharm. Sci. 91(3):800–809 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Yoshioka and V. J. Stella. Stability of Drugs and Dosage Forms, Plenum, New York, 2000, pp. 108–113.Google Scholar
  12. 12.
    T. Hladon, B. Cwiertnia. The effect of humidity on the stability of diclofenac sodium in inclusion complex with ß-cyclodextrin in the solid state. Pharmazie 54(12):943–944 (1999).Google Scholar
  13. 13.
    D. Genton and U. W. Kesselring. Effect of temperature and relative humidity on nitrazepam stability in solid state. J. Pharm. Sci. 66:676–680 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Zajac. Stability of crystalline mecilliname sodium salt in the solid phase. Acta Pol. Pharm. 41:659–664 (1984).Google Scholar
  15. 15.
    M. C. Lai, M. J. Hageman, R. L. Schowen, R. T. Borchardt, and E. M. Topp. Chemical stability of peptides in polymers. 1. Effect of water on peptide deamidation in poly(vinyl alcohol) and poly(vinyl pyrrolidone) matrixes. J. Pharm. Sci. 88(10):1073–1080 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    L. N. Bell and M. J. Hageman. Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: aspartame degradation. J. Agric. Food Chem. 42:2398–2401 (1994).CrossRefGoogle Scholar
  17. 17.
    Z. Plotkowiak. The effect of chemical character of certain penicillins on the stability of the ß-lactam group in their molecules. Pharmazie 44:837–839 (1989).Google Scholar
  18. 18.
    E. Pawelczyk, Z. Plotkowiak, and M. Helska. Kinetics of thermal decomposition of talampicillin hydrochloride in the solid state. Pharmazie 55(5):390–391 (2000).PubMedGoogle Scholar
  19. 19.
    F.Y. Tripet and U.W. Kesselring. Etude de stabilité de l-acide folique à l’état solide en function de la température et de l’humidité. Pharm Acta Helv. 50(10):318–322 (1975).PubMedGoogle Scholar
  20. 20.
    R. G. Strickley and B. D. Anderson. Solid-state stability of human insulin II. Effect of water on reactive intermediate partitioning in lyophiles from pH 2–5 solutions: stabilization against covalent dimmer formation. J. Pharm. Sci. 86(6):645–653 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kenneth C. Waterman
    • 1
  • Anthony J. Carella
    • 1
  • Michael J. Gumkowski
    • 1
  • Patrick Lukulay
    • 2
  • Bruce C. MacDonald
    • 1
  • Michael C. Roy
    • 1
  • Sheri L. Shamblin
    • 1
  1. 1.Pfizer Global Research & DevelopmentGrotonUSA
  2. 2.Pfizer Global Research & DevelopmentAnn ArborUSA

Personalised recommendations