Skip to main content
Log in

Drying-Induced Variations in Physico-Chemical Properties of Amorphous Pharmaceuticals and Their Impact on Stability II: Stability of a Vaccine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objectives

To investigate the impact of drying method on the storage stability of dried vaccine formulations.

Materials and Methods

A sucrose-based formulation of a live attenuated virus vaccine of a parainfluenza strain, with and without surfactant, was dried from by different methods; freeze drying, spray drying and foam drying. Dried powders were characterized by differential scanning calorimetry, specific surface area (SSA) analysis and by electron spectroscopy for chemical analysis (ESCA) to evaluate vaccine surface coverage in the dried formulations. Dried formulations were subjected to storage stability studies at 4, 25 and 37°C. The vaccine was assayed initially and at different time points to measure virus-cell infectivity, and the degradation rate constant of the vaccine in different dried preparations was determined.

Results

SSA was highest with the spray dried preparation without surfactant (∼ 2.8 m2/g) and lowest in the foam dried preparations (with or without surfactant) (∼ 0.1 m2/g). Vaccine surface coverage was estimated based on ESCA measurements of nitrogen content. It was predicted to be highest in the spray dried preparation without surfactant and lowest in the foam with surfactant. Stability studies conducted at 25°C and 37°C showed that the vaccine was most stable in the foam dried preparation with surfactant and least stable in spray dried preparations without surfactant and in all freeze dried preparations regardless of the presence of surfactant. Addition of surfactant did lower the SSA and vaccine surface coverage in freeze dried preparations but still did not improve storage stability.

Conclusions

In drying methods that did not involve a freezing step, good storage stability of Medi 534 vaccine in the dried form was found with low SSA and low vaccine surface accumulation, both of which integrate into low fraction of vaccine at the surface. Ice appears to be a major destabilizing influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. T. O’Hagan and R. Rappuoli. Novel approaches to vaccine delivery. Pharm. Res. 21:1519–1530 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. D. O. White and F. J. Fenner. Medical Virology, 3rd ed. Academic, Orlando, FL, 1987.

  3. D. J. A. Crommelin and R. D. Sindelar. Pharmaceutical Biotechnology: An Introduction for Pharmacists and Pharmaceutical Scientists, 2nd ed. Taylor & Francis, New York, 2002.

  4. D. T. Brandau, L. S. Jones, and C. R. Middaugh. Thermal stability of vaccines. J. Pharm. Sci. 92:218–231 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. R. Bey, R. Simonson, and N. Garcon. Formulation of vaccines. Drugs Pharm. Sci. 88:283–303 (1998).

    CAS  Google Scholar 

  6. D. Greiff. Comparative studies of the cryobiology of viruses classified according to their physicochemical characteristics. Freezing drying microorganisms, Pap. Conf. \"Mech. Cell. Inj. Freezing Drying Microorganisms\" 69–80 (1969).

  7. J. Rexroad, R. K. Evans, and C. R. Middaugh. Effect of pH and lonic strength on the physical stability of adenovirus type 5. J. Pharm. Sci. 95:237–247 (2005).

    Article  CAS  Google Scholar 

  8. Y.-F. Maa, M. Ameri, and D. Chen. Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. J. Pharm. Sci. 93:1912–1923 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Y.-F. Maa, M. Ameri, and D. Chen. Spray-coating for biopharmaceutical powder formulations: beyond the conventional scale and its application. Pharm. Res. 21:515–523 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. D. I. Annear. The preservation of bacteria by drying in peptone plugs. J. Hyg. 54:487–508 (1956).

    CAS  Google Scholar 

  11. D. I. Annear. Recoveries of bacteria after drying in vacuo at a bath temperature of 100 degrees C. Nature 211:761 (1966).

    Article  PubMed  CAS  Google Scholar 

  12. D. I. Annear. Recoveries of bacteria after drying and heating in glutamate foams. J. Hyg. 68:457–459 (1970).

    Article  CAS  Google Scholar 

  13. E. E. Worrall, J. K. Litamoi, and G. Ayelet. Xerovac: an ultra rapid method for the dehydration and preservation of live attenuated Rinderpest and Peste des Petits ruminants vaccines. Vaccine 19:834–839 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. V. Truong-Le. Preservation of bioactive materials by freeze dried foam, (Medimmune Vaccines, Inc., USA). Application: WO, 2003, pp. 72 pp.

  15. M. Mattern, G. Winter, and G. Lee. Formulation of proteins in vacuum-dried glasses. Part 1. Improved vacuum-drying of sugars using crystallizing amino acids. Eur. J. Pharm. Biopharm. 44:177–185 (1997).

    Article  CAS  Google Scholar 

  16. M. Mattern, G. Winter, and G. Lee. Formulation of proteins in vacuum-dried glasses. II. Process and storage stability in sugar-free amino acid systems. Pharm. Dev. Technol. 4:199–208 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. D. Greiff, W. A. Rightsel, and E. E. Schuler. Effects of freezing, storage at low temperatures, and drying by sublimation in vacuo on the activities of measles virus. Nature 202:624–625 (1964).

    Article  PubMed  CAS  Google Scholar 

  18. W. A. Rightsel and D. Greiff. Freezing and freeze-drying of viruses. Cryobiology 3:423–431 (1967).

    Article  PubMed  CAS  Google Scholar 

  19. V. Truong-Le and T. Scherer. High pressure spray-dry of bioactive materials, (Medimmune Vaccines, Inc., USA). Application: WO, 2005, pp. 71 pp.

  20. B. A. Szkudlarek, T. J. Anchordoquy, and N. Rodriguez-Hornedo. pH changes of phosphate buffer solutions during freezing and their influence on the stability of a model protein, lactate dehydrogenase. In Book of Abstracts, 211th ACS National Meeting, New Orleans, LA, March 24–28 BIOT-138 (1996).

  21. G. Lee. Spray-drying of proteins. Pharm. Biotechnol. 13:135–158 (2002).

    PubMed  CAS  Google Scholar 

  22. N. Jovanovic, A. Bouchard, and W. Jiskoot. Stabilization of proteins in dry powder formulations using supercritical fluid technology. Pharm. Res. 21:1955–1969 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. S. D. Webb, S. L. Golledge, and T. W. Randolph. Surface adsorption of recombinant human interferon-g in lyophilized and spray-lyophilized formulations. J. Pharm. Sci. 91:1474–1487 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. C. Bosquillon, P. G. Rouxhet, and R. Vanbever. Aerosolization properties, surface composition and physical state of spray-dried protein powders. J. Control. Release 99:357–367 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. A. Millqvist-Fureby, M. Malmsten, and B. Bergenstahl. Surface characterization and activity preservation in spray-drying of trypsin. Int. J. Pharm. 188:243–253 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. D. Greiff. Stabilities of suspensions of influenza virus dried by sublimation of ice in vacuo to different contents of residual moisture and sealed under different gases. Appl. Microbiol. 20:935–938 (1970).

    PubMed  CAS  Google Scholar 

  27. H. R. Costantino, S. P. Schwendeman, and R. Langer. The secondary structure and aggregation of lyophilized tetanus toxoid. J. Pharm. Sci. 85:1290–1293 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. S. Prestrelski, N. Tedeschi, T. Arakawa, and J. F. Carpenter. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys. J. 65:661–671 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. S. J. Prestrelski, K. A. Pikal, and T. Arakawa. Optimization of lyophilization conditions for recombinant human interleukin-2 by dried-state conformational analysis using Fourier-transform infrared spectroscopy. Pharm. Res. 12:1250–1259 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. A. Millqvist-Fureby, M. Malmsten, and B. Bergenstahl. Surface characterization of freeze-dried protein/carbohydrate mixtures. Int. J. Pharm. 191:103–114 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. M. Adler and G. Lee. Stability and surface activity of lactate dehydrogenase in spray-dried trehalose. J. Pharm. Sci. 88:199–208 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. P. Faeldt and B. Bergenstahl. The surface composition of spray-dried protein-lactose powders. Colloids Surf., A Physicochem. Eng. Asp. 90:183–90 (1994).

    Article  CAS  Google Scholar 

  33. M. Suzuki. Protectants in the freeze-drying and the preservation of Vaccinia virus. Cryobiology 10:435–439 (1973).

    Article  PubMed  CAS  Google Scholar 

  34. A. Abdul-Fattah, M. Pikal, and D. Lechuga-Ballesteros. Composition heterogeneity effects due to variation in processing and formulation of Methionyl-human Growth Hormone. In AAPS National Biotechnology Conference, San Francisco, CA, 2005.

  35. A. Abdul-Fattah, D. Kalonia, M. Pikal, and D. Lechuga-Ballesteros. The surface composition of spray dried and freeze dried protein formulations with varying molecular weight stabilizers. In American Association of Pharmaceutical Scientists Annual Meeting, Nashville, TN, 2005.

  36. A. Abdul-Fattah, D. Kalonia, and M. Pikal. The challenge of drying method selection for protein pharmaceuticals: product quality implications. Manuscript in preparation.

  37. J. F. Carpenter, M. J. Pikal, and T. W. Randolph. Rational design of stable lyophilized protein formulations: some practical advice. Pharm. Res. 14:969–975 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. J. F. Carpenter, M. C. Manning, and Editors. Rational design of stable protein formulations: theory and practice. [In: Pharm. Biotechnol., 2002; 13], 2002.

  39. R. S. Tang, J. H. Schickli, and A. A. Haller. Effects of human metapneumovirus and respiratory syncytial virus antigen insertion in two 3′ proximal genome positions of bovine/human parainfluenza virus type 3 on virus replication and immunogenicity. J. Virol. 77:10819–10828 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. A. A. Haller, T. Miller, and K. Coelingh. Expression of the surface glycoproteins of human parainfluenza virus type 3 by bovine parainfluenza virus type 3, a novel attenuated virus vaccine vector. J. Virol. 74:11626–11635 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. S. D. Sovani, E. Chou, and J. D. Crofts. High pressure effervescent atomization: effect of ambient pressure on spray cone angle. Fuel 80:427–435 (2001).

    Article  CAS  Google Scholar 

  42. L. I. Yin and I. Adler. Electron spectroscopy. Instrum. Anal. 418–442 (1978).

  43. S. Zhai, R. Hansen, R. Taylor, J. Skepper, R. Sanches, and N. Slater. Effect of freezing rates and excipients on the infectivity of a live viral vaccine during lyophilization. Biotechnol. Prog. 20:1113–1120 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. P. P. a. M. Trudel. Isolation and identification of viruses. In M. T. a. R. A. Pierre Payment (ed.), Methods and Techniques in Virology (M. T. a. R. A. Pierre Payment, ed), Marcel Dekker, Inc., New York, NY, 1993, pp. 30–35.

  45. Q. Lu and G. Zografi. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm. Res. 15:1202–1206 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. K. Izutsu, S. Yoshioka, and J. F. Carpenter. Effects of sugars and polymers on crystallization of poly(ethylene glycol) in frozen solutions: phase separation between incompatible polymers. Pharm. Res. 13:1393–1400 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. X. Lu and M. J. Pikal. Freeze-drying of Mannitol-Trehalose-Sodium Chloride-based formulations: the impact of annealing on dry layer resistance to mass transfer and cake structure. Pharm. Dev. Technol. 9:85–95 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. M. J. Pikal, S. Shah, and J. E. Lang. Physical chemistry of freeze-drying: measurement of sublimation rates for frozen aqueous solutions by a microbalance technique. J. Pharm. Sci. 72:635–650 (1983).

    Article  PubMed  CAS  Google Scholar 

  49. J. A. Searles, J. F. Carpenter, and T. W. Randolph. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)′ in pharmaceutical lyophilization. J. Pharm. Sci. 90:872–887 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. P. Faeldt, B. Bergenstahl, and G. Carlsson. The surface coverage of fat on food powders analyzed by ESCA (electron spectroscopy for chemical analysis). Food Struct. 12:225–234 (1993).

    CAS  Google Scholar 

  51. M. Adler, M. Unger, and G. Lee. Surface composition of spray-dried particles of bovine serum albumin/trehalose/surfactant. Pharm. Res. 17:863–870 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. M. J. Pikal and D. R. Rigsbee. The stability of insulin in crystalline and amorphous solids: observation of greater stability for the amorphous form. Pharm. Res. 14:1379–1387 (1997).

    Article  PubMed  CAS  Google Scholar 

  53. J. Liu, D. R. Rigsbee, and M. J. Pikal. Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry. J. Pharm. Sci. 91:1853–1862 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. S. Yoshioka, Y. Aso, and S. Kojima. Usefulness of the Kohlrausch-Williams-Watts stretched exponential function to describe protein aggregation in lyophilized formulations and the temperature dependence near the glass transition temperature. Pharm. Res. 18:256–260 (2001).

    Article  PubMed  CAS  Google Scholar 

  55. W. N. Fishbein and J. W. Winkert. Parameters of biological freezing damage in simple solutions: catalase. I. The characteristic pattern of intracellular freezing damage exhibited in a membraneless system. Cryobiology 14:389–398 (1977).

    Article  PubMed  CAS  Google Scholar 

  56. B. S. Bhatnagar, S. J. Nehm, and R. H. Bogner. Post-thaw aging affects activity of lactate dehydrogenase. J. Pharm. Sci. 94:1382–1388 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. A. M. Abdul-Fattah, V. Truong-Le, L. Yee, L. Nguyen, D. Kalonia, M. T. Cicerone, and M. Pikal. Drying-induced variations in physico-chemical properties of amorphous pharmaceuticals and their impact on stability I: stability of a monoclonal antibody I. J. Pharm. Sci. (2007) in press.

  58. X. Tang and M. J. Pikal. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying. Pharm. Res. 22:1176–1185 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. S. U. Sane, R. Wong, and C. C. Hsu. Raman spectroscopic characterization of drying-induced structural changes in a therapeutic antibody: correlating structural changes with long-term stability. J. Pharm. Sci. 93:1005–1018 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. F. Poirier-Brulez, G. Roudaut, and D. Simatos. Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation. Biopolymers 81:63–73 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge MedImmune Vaccines for financial support for this project. We would also like to acknowledge Dr. Daniel Goberman from the Surface Sciences Laboratory in the Institute for Materials Sciences at the University of Connecticut for his assistance with use of the VG ESCALAB MK II series Spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Pikal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul-Fattah, A.M., Truong-Le, V., Yee, L. et al. Drying-Induced Variations in Physico-Chemical Properties of Amorphous Pharmaceuticals and Their Impact on Stability II: Stability of a Vaccine. Pharm Res 24, 715–727 (2007). https://doi.org/10.1007/s11095-006-9191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9191-2

Key words

Navigation