Pharmaceutical Research

, Volume 24, Issue 2, pp 318–327 | Cite as

Assessment of the First and Second Generation Antihistamines Brain Penetration and Role of P-Glycoprotein

  • Tanja Obradovic
  • Glenn G. Dobson
  • Tomotaka Shingaki
  • Thomas Kungu
  • Ismael J. Hidalgo
Research Paper



The sedating effect of first generation H1-antihistamines has been associated with their ability to penetrate the blood-brain barrier (BBB) and lack of efflux by P-glycoprotein (Pgp). Second generation H1-antihistamines are relatively free of sedation and their limited brain penetration has been suggested to arise from Pgp-mediated efflux. The objective of this work was to evaluate the role of Pgp in brain penetration of first and second generation antihistamines.


Potential of antihistamines to be Pgp substrates was tested in vitro using Madin Darby canine kidney cells transfected with human Pgp. The role of Pgp in limiting brain penetration of antihistamines was tested by using the in situ brain perfusion technique.


Majority of antihistamines were Pgp substrates in vitro. Following in situ brain perfusion, the first generation antihistamines substantially penetrated into rat brain independently from Pgp function. The second generation antihistamines terfenadine and loratadine, achieved substantial brain penetration, which was further enhanced by Pgp inhibition by cyclosporin A (CSA). In contrast, fexofenadine and cetirizine, penetrated brain poorly regardless of CSA administration.


Antihistamines greatly differ in their ability to cross the BBB as well as in the role of Pgp in limiting their transport into the CNS in vivo.

Key words

antihistamine blood-brain barrier P-glycoprotein efflux brain perfusion 



blood-brain barrier


cyclosporin A


central nervous system


unidirectional transfer constant


apparent permeability coefficient



The authors are grateful to Hilltop Labs (Scottdale, PA, USA) for their assistance in this work.


  1. 1.
    F. Estelle and R. Simons. Advances in H1-antihistamines. N. Engl. J. Med. 351:2203–2217 (2004).CrossRefGoogle Scholar
  2. 2.
    I. Hindmarch, S. Johnson, R. Meadows, T. Kirkpatrick and Z. Shamsi. The acute and sub-chronic effects of levocetirizine, cetirizine, loratadine, promethazine and placebo on cognitive function, psychomotor performance, and wheal and flare. Curr. Med. Res. Opin. 17:241–255 (2001).PubMedGoogle Scholar
  3. 3.
    H. Timmerman. Factors involved in the absence of sedative effects by the second-generation antihistamines. Allergy 55 (Suppl. 60):5–10 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. ter Laak, G. J. Bijloo, M. J. E. Fisher, K. G. M. Donne-Op, P. A. Carrupt, B. Testa, and H. Timmerman. Serum protein binding of histamine H1-antagonists: a comparative study on the serum protein binding of a sedating (3H-mepyramine) and a non-sedating H1-antagonist (3H-loratadine). Eur. J. Pharm. Sci. 4:307–319 (1996).CrossRefGoogle Scholar
  5. 5.
    A. M. ter Laak, K. G. M. Donne-Op, A. Bast, and H. Timmerman. Is there a difference in the affinity of histamine H1-receptors agonists for CNS and peripheral receptors? Eur. J. Pharm. Sci. 232:199–205 (1993).CrossRefGoogle Scholar
  6. 6.
    A. M. ter Laak, R. S. Tsai, K. G. M. Donne-Op, and G. M. Kelder. Lipophilicity and hydrogen-bonding capacity of H1-antihistaminergic agents in relation to their central sedative side-effects. Eur. J. Pharm. Sci. 2:373–384 (1994).CrossRefGoogle Scholar
  7. 7.
    M. Chishty, A. Reichel, J. Siva, N. J. Abbot, and D. J. Begley. Affinity for the P-glycoprotein efflux pump at the blood brain barrier may explain the lack of CNS side-effects of modern antihistamines. J. Drug Target. 9:223–228 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Chen, E. Hanson, J. W. Watson, and J. S. Lee. P-Glycoprotein limits the brain penetration of nonsedating but not sedating H1-antagonists. Drug Metab. Dispos. 31:312–318 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    A. H. Schinkel. P-glycoprotein: a gatekeeper in the blood-brain barrier. Adv. Drug Del. Rev. 36:179–194 (1999).CrossRefGoogle Scholar
  10. 10.
    A. H. Schinkel, J. J. M. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter L, C. A. A. M. Mol, M. A. van der Valk, E. C. Robanaus-Maandag, H. P. J. te Riele, A. J. M. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Sun, H. Dai, N. Shaik, and W. F. Elmquist. Drug efflux transporters in the CNS. Adv. Drug Deliv. Rev. 55:83–105 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    H. A. Volk, and W. Loscher. Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain 128:1358–1368 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    N. Ishiguro, T. Nozawa, A. Tsujihata, A. Saito, W. Kishimoto, K. Yokoyama, T. Yosumoto, K. Sakai, T. Igarashi, and I. Tamai. Influx and efflux transport of H1-antagonist epinastine across the blood-brain barrier. Drug Metab. Dispos. 32:519–524 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    J. W. Polli, T. M. Baughman, J. E. Humphreys, K. H. Jordan, A. L. Mote, J. A. Salisbury, T. K. Tippin, and C. J. Serabjit-Singh. P-glycoprotein influences the brain concentration of cetirizine (Zyrtec), a second-generation non-sedating antihistamine. J. Pharm. Sci. 92:2082–2089 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Cvetkovic, B. Leake, M. F. Fromm, G. R. Wilkinson, and R. B. Kim. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos. 27:866–871 (1999).PubMedGoogle Scholar
  16. 16.
    K. M. Mahar Doan, S. A. Wring, L. J. Shampine, K. H. Jordan, J. P. Bishop, J. Kratz, E. Yang, C. J. Serabijit-Singh, K. K. Adkison, and J. W. Polli. Steady-state brain concentrations of antihistamines in rats: interplay of membrane permeability, P-glycoprotein efflux and plasma protein binding. Pharmacology 72:92–98 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    F. Bonifazi, L. Provinciali, L. Antonicelli, M. B. Bilo, S. Pucci, M. Signorino, B. Franciolino, B. Censori, P. Pagelli, and A. Iudice. Comparative study of terfenadine and cetirizine in hay fever: assessment of efficacy and central nervous system effects. J. Investig. Allergol. Clin. Immunol. 5:40–46 (1995).PubMedGoogle Scholar
  18. 18.
    A. Shamsi and I. Hindmarch. Sedation and antihistamines: a review of inter-drug differences using proportional impairment ratios. Hum. Psychopharmacol. 15: Suppl. 1: S3–S30 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    I. Hindmarch, Z. Shamsi, and S. Kimber. An evaluation of the effects of high-dose fexofenadine on the central nervous system: a double-blind, placebo-controlled study in healthy volunteers. Clin. Exp. Allergy 32: 133–139 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Tashiro, Y. Sakurada, K. Iwabuchi, H. Mochizuki, M. Kato, M. Aoki, Y. Funaki, M. Itoh, R. Iwata, D. F. Wong, and K. Yanai. Central effects of fexofenadine and cetirizine; measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11C-doxepin positron emission tomography. J. Clin. Pharmacol. 44:890–900 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    J. W. Polli, S. A. Wring, J. E. Humphreys, L. Huang, J. B. Morgan, L. O. Webster, and C. J. Serabjit-Singh. Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299:620–628 (2001).PubMedGoogle Scholar
  22. 22.
    K. M. Mahar Doan, J. E. Humphreys, L. O. Webster, S. A. Wring, L. J. Shampine, C. J. Serabjit-Singh, K. K. Adkison, and J. W. Polli. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther. 303:1029–1037 (2002).PubMedCrossRefGoogle Scholar
  23. 23.
    Q. Wang, J. D. Rager, K. Weinstein, P. S. Kardos, G. L. Dobson, J. Li, and I. J. Hidalgo. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int. J. Pharm. 288:349–359 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Tahara, H. Kusuhara, E. Fuse, and Y. Sugiyama. P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. Drug Metab. Dispos. 33:963–968 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Doran, R. S. Obach, B. J. Smith, N. A. Hosea, S. Becker, E. Callegari, C. Chen, X. Chen, E. Choo, J. Cianfrogna, L. M. Cox, J. P. Gibbs, M. A. Gibbs, H. Hatch, C. E. C. A. Hop, I. N. Kasman, J. LaPerle, J. Liu, X. Liu, M. Logman, D. Maclin, F. M. Nedza, F. Nelson, E. Olson, S. Rahematpura, D. Raunig, S. Rogers, K. Schmidt, D. K. Spracklin, M. Szewc, M. Troutman, E. Tseng, M. Tu, J. W. Van Deusen, K. Venkatakrishnan, G. Walens, E. Q. Wang, D. Wong, A. S. Yasgar, and C. Zhang. The impact of P-glucoprotein on the disposition of drugs targeted for indications in the central nervous system: evaluation using MDR1A/1B knockout mouse model. Drug Metab. Dispos. 33:165–174 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Cisternino, C. Mercier, F. Bourasset, F. Roux, and J. M. Schermann. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res. 64:3296–3301 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    N. N. Salama, E. J. Kelly, T. Bui, and R. J. Ho. The impact of pharmacologic and genetic knockout of P-glycoprotein on nelfinavir levels in the brain and other tissues in mice. J. Pharm. Sci. 94:1216–1225 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Takasato, S. I. Rapaport, and Q. R. Smith. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247:H484–H493 (1984).PubMedGoogle Scholar
  29. 29.
    Q. R. Smith. Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. Pharm. Biotechnol. 8:285–307 (1996).PubMedGoogle Scholar
  30. 30.
    J. A. Street, B. A. Hemsworth, A. G. Roach, and M.D. Day. Tissue levels of several radio labeled beta-adrenoceptor antagonists after intravenous administration in rats. Arch. Int. Pharmacodyn. Ther. 237:180–190 (1979).PubMedGoogle Scholar
  31. 31.
    B. V. Zlokovic, D. J. Begley, B. M. Djuricic, and D. M. Mitrovic. Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain: method and application to N-methyl-alpha-aminoisobutyric acid. J. Neurochem. 46:1444–1451 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    J. E. Preston, H. Al-Sarraf, and M. B. Segal. Permeability of the developing blood-brain barrier to 14C-mannitol using the rat in situ brain perfusion technique. Brain Res. Dev. Brain Res. 87:69–76 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    K. A. Youdim, M. Z. Qaiser, D. J. Begley, C. Rice-Evans, and N. J. Abbott. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic. Biol. Med. 36:592–604 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    M. J. Mattila, and I. Paakkari. Variations among non-sedating antihistamines: are there real differences? Eur. J. Clin. Pharmacol. 55:85–93 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    D. E. Clark. Prediction of intestinal absorption and blood-brain barrier penetration by computational methods. Comb. Chem. High Throughput Screen. 4:477–496 (2001).PubMedGoogle Scholar
  36. 36.
    H. Mizuuchi, T. Katsura, H. Saito, Y. Hashimoto, and K. I. Inui. Transport characteristics of diphenhydramine in human intestinal epithelial Caco-2 cells: contribution of pH-dependent transport system. J. Pharmacol. Exp. Ther. 290:388–392 (1999).PubMedGoogle Scholar
  37. 37.
    H. Mizuuchi, T. Katsura, K. Ashida, Y. Hashimoto, and K. I. Inui. Diphenhydramine transport by pH-dependent tertiary amine transport system in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 278:G563–G569 (2000).PubMedGoogle Scholar
  38. 38.
    K. K. Kandimalla, and M. D. Donovan. Carrier mediated transport of chlorpheniramine and chlorcyclizine across bovine olfactory mucosa: implications on nose-to-brain transport. J. Pharm. Sci. 94:613–624 (2005).PubMedCrossRefGoogle Scholar
  39. 39.
    S. Lundquist, M. Renftel, J. Brillault, L. Fenart, R. Cecchelli, and M. P. Dehouck. Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharm. Res. 19:976–981 (2002).PubMedCrossRefGoogle Scholar
  40. 40.
    S. G. Summerfield, A. J. Stevens, L. Cutler, M. C. Osuna, B. Hammond, S. P. Tang, A. Hersey, D. Spalding, and P. Jeffrey. Improving the in vitro prediction of in vivo CNS penetration: integrating permeability, Pgp efflux and free fractions in blood and brain. J. Pharmacol. Exp. Ther. 316:1282–1290 (2006).PubMedCrossRefGoogle Scholar
  41. 41.
    X. Liu, B. J. Smith, C. Chen, E. Callegari, S. L. Backer, X. Chen, J. Cianfrogna, A. C. Doran, S. D. Doran, J. P. Gibbs, N. Hosea, J. Liu, F. R. nelson, M. A. Szewc, and J. V. Deusen. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J. Pharmacol. Exp. Ther. 313:1254–1262 (2005).PubMedCrossRefGoogle Scholar
  42. 42.
    K. Yanai, J. H. Ryu, T. Watanabe, R. Iwata, T. Ido, Y. Sawai, K. Ito, and M. Itoh. Histamine H1 receptor occupancy in human brains after single oral doses of histamine H1 antagonists measured by positron emission tomography. Br. J. Pharmacol. 116:1649–1655 (1995).PubMedGoogle Scholar
  43. 43.
    J. C. Verster, and E. R. Volkerts. Antihistamines and driving ability: evidence from on-the-road driving studies during normal traffic. Ann. Allergy Asthma Immunol. 92:294–303 (2004).PubMedCrossRefGoogle Scholar
  44. 44.
    R. D. Mann, L. G. Pearce, N. Dunn, and S. Shakir. Sedation with “non-sedating” antihistamines: four prescription-event monitoring studies in general practice. BMJ 320:1184–1187 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Tanja Obradovic
    • 1
  • Glenn G. Dobson
    • 1
  • Tomotaka Shingaki
    • 1
  • Thomas Kungu
    • 1
  • Ismael J. Hidalgo
    • 1
  1. 1.Absorption SystemsOaklands Corporate CenterExtonUSA

Personalised recommendations