Skip to main content

Advertisement

Log in

Modeling Cardiac Uptake and Negative Inotropic Response of Verapamil in Rat Heart: Effect of Amiodarone

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine the effect of the P-glycoprotein (Pgp) modulator amiodarone on the pharmacokinetics and pharmacodynamics (PK/PD) of Pgp substrate verapamil in the perfused rat heart.

Methods

In Langendorff-perfused rat hearts, the outflow concentration–time curve and inotropic response data were measured after a 1.5 nmol dose of [3H]-verapamil (infused within 1 min) in the absence and presence of the amiodarone (1 μM) in perfusate, as well as using a double dosing regimen (0.75 nmol in a 10 min interval). These data were analyzed by a PK/PD model.

Results

Amiodarone failed to influence the rapid uptake and equilibrium partitioning of verapamil into the heart. The time course of the negative inotropic effect of verapamil, including the ‘rebound’ above the original baseline after the infusion of verapamil was stopped, could be described by a PK/PD tolerance model. Tolerance development (mean delay time, 12 min) led to a reduction in predicted steady-state effect (16%). The EC50 and E max values as estimated in single dose experiments were 16.4 ± 4.1 nM and 50.5 ± 18.9 mmHg, respectively.

Conclusions

The result does not support the hypothesis that Pgp inhibition by amiodarone increases cardiac uptake of the Pgp substrate verapamil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CVR:

coronary vascular resistance

LVDP:

left ventricular developed pressure

Pgp:

P-glycoprotein

PK/PD:

pharmacokinetic/pharmacodynamic

References

  1. W. A. Catterall and J. Striessnig. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol. Sci. 13:256–262 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. I. Bodi, G. Mikala, S. E. Koch, S. A. Akhter, and A. Schwartz. The L-type calcium channel in the heart: the beat goes on. J. Clin. Invest. 115:3306–3317 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. M. J. Eisenberg, A. Brox, and A. N. Bestawros. Calcium channel blockers: an update. Am. J. Med. 116:35–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. A. C. Powell, J. D. Horowitz, P. J. Kertes, Y. Hasin, M. L. Syrjanen, C. A. Henry, D. M. Sartor, and W. J. Louis. Determinants of acute hemodynamic and electrophysiologic effects of verapamil in humans: role of myocardial drug uptake. J. Cardiovasc. Pharmacol. 16:572–583 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Y. F. Huang, R. N. Upton, D. Zheng, C. McLean, E. C. Gray, and C. Grant. The enantiomer-specific kinetics and dynamics of verapamil after rapid intravenous administration to sheep: physiological analysis and modeling. J. Pharmacol. Exp. Ther. 284:1048–1057 (1998).

    CAS  PubMed  Google Scholar 

  6. L. Sasongko, J. M. Link, M. Muzi, D. A. Mankoff, X. Yang, A. C. Collier, S. C. Shoner, and J. D. Unadkat. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin. Pharmacol. Ther. 77:503–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. L. Couture, J. A. Nash, and J. Turgeon. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol. Rev. 58:244–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. K. Meissner, B. Sperker, C. Karsten, H. M. Zu Schwabedissen, U. Seeland, M. Bohm, S. Bien, P. Dazert, C. Kunert-Keil, S. Vogelgesang, R. Warzok, W. Siegmund, I. Cascorbi, M. Wendt, and H. K. Kroemer. Expression and localization of P-glycoprotein in human heart: effects of cardiomyopathy. J. Histochem. Cytochem. 50:1351–1356 (2002).

    CAS  PubMed  Google Scholar 

  9. A. J. Lazarowski, H. J. Garcia Rivello, G. L. Vera Janavel, L. A. Cuniberti, P. M. Cabeza Meckert, G. G. Yannarelli, A. Mele, A. J. Crottogini, and R. P. Laguens. Cardiomyocytes of chronically ischemic pig hearts express the MDR-1 gene-encoded P-glycoprotein. J. Histochem. Cytochem. 53:845–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. J. H. Wang, D. A. Scollard, S. Teng, R. M. Reilly, and M. Piquette-Miller. Detection of P-glycoprotein activity in endotoxemic rats by 99mTc-sestamibi imaging. J. Nucl. Med. 46:1537–1545 (2005).

    CAS  PubMed  Google Scholar 

  11. J. van Asperen, O. van Tellingen, F. Tijssen, A. H. Schinkel, and J. H. Beijnen. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br. J. Cancer 79:108–113 (1999).

    Article  PubMed  Google Scholar 

  12. M. Weiss and W. Kang. P-glycoprotein inhibitors enhance saturable uptake of idarubicin in rat heart: pharmacokinetic/pharmacodynamic modeling. J. Pharmacol. Exp. Ther. 300:688–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. G. Speelmans, R. W. Staffhorst, F. A. De Wolf, and B. De Kruijff. Verapamil competes with doxorubicin for binding to anionic phospholipids resuling in increased internal concentrations and rates of passive transport of doxorubicin. Biochim. Biophys. Acta 1238:137–146 (1995).

    Article  PubMed  Google Scholar 

  14. R. Regev, D. Yeheskely-Hayon, H. Katzir, and G. D. Eytan. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem. Pharmacol. 70:161–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. W. D. Stein. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol. Rev. 77:545–590 (1997).

    CAS  PubMed  Google Scholar 

  16. G. P. Dobson, and J. H. Cieslar. Intracellular, interstitial and plasma spaces in the rat myocardium in vivo. J. Mol. Cell Cardiol. 29:3357–3363 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. P. Sermsappasuk, M. Baek, and M. Weiss. Kinetic analysis of myocardial uptake and negative inotropic effect of amiodarone in rat heart. Eur. J. Pharm. Sci. 28:243–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. J. W. Mandema, and D. R. Wada. Pharmacodymic model for acute tolerance development to the electroencephalographic effects of alfentanil in the rat. J. Pharmacol. Exp. Ther. 275:1185–1194 (1995).

    CAS  PubMed  Google Scholar 

  19. Y. N. Sun and W. J. Jusko. Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J. Pharm. Sci. 87:732–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. D. Z. D’Argenio and A. Schumitzky. ADAPT II User’s guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Biomedical Simulations Resource, Los Angeles, 1997.

    Google Scholar 

  21. M. Weiss, M. Baek, and W. Kang. Systems analysis of digoxin kinetics and inotropic response in rat heart: Effects of calcium and KB-R7943. Am. J. Physiol. Heart Circ. Physiol. 287:H1857–H1867 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. D. L. Keefe, Y. G. Yee, and R. E. Kates. Verapamil protein binding in patients and in normal subjects. Clin. Pharmacol. Ther. 29:21–26 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. D. L. Keefe and R. E. Kates. Myocardial disposition and cardiac pharmacodynamics of verapamil in the dog. J. Pharmacol. Exp. Ther. 220:91–96 (1982).

    CAS  PubMed  Google Scholar 

  24. T. Rodgers, D. Leahy, and M. Rowland. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J. Pharm. Sci. 94:1259–1276 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. R. P. Mason, G. E. Gonye, D. W. Chester, and L. G. Herbette. Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological membranes. Biophys. J. 55:769–778 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. M. Walles, T. Thum, K. Levsen, and J. Borlak. Verapamil metabolism in distinct regions of the heart and in cultures of cardiomyocytes of adult rats. Drug Metab. Dispos. 29:761–768 (2001).

    CAS  PubMed  Google Scholar 

  27. J. Borlak, M. Walles, K. Levsen, and T. Thum. Verapamil: metabolism in cultures of primary human coronary arterial endothelial cells. Drug Metab. Dispos. 31:888–891 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. S. Drori, G. D. Eytan, and Y. G. Assaraf. Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. Eur. J. Biochem. 228:1020–1029 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. W. Kang and M. Weiss. Kinetic analysis of saturable myocardial uptake of idarubicin in rat heart. Effect of doxorubicin and hypothermia. Pharm. Res. 20:58–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. M. Gardmark, L. Brynne, M. Hammarlund-Udenaes, and M. O. Karlsson. Interchangeability and predictive performance of empirical tolerance models. Clin. Pharmacokinet. 36:145–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. D. L. Brutsaert. Cardiac endothelial–myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 83:59–115 (2003).

    CAS  PubMed  Google Scholar 

  32. Y. Watanabe and J. Kimura. Inhibitory effect of amiodarone on Na(+)/Ca(2+) exchange current in guinea-pig cardiac myocytes. Br. J. Pharmacol. 131:80–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. M. E. Hess, J. Shanfeld, and N. R. Levine. Metabolic and inotropic effects of verapamil in perfused rat heart. Recent Adv. Stud. Cardiac Struct. Metab. 10:81–88 (1975).

    CAS  PubMed  Google Scholar 

  34. F. Kolar, B. Ost’adal, and F. Papousek. Effect of verapamil on contractile function of the isolated perfused rat heart during postnatal ontogeny. Basic Res. Cardiol. 85:429–434 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. R. H. Schwinger, M. Bohm, and E. Erdmann. Negative inotropic properties of isradipine, nifedipine, diltiazem, and verapamil in diseased human myocardial tissue. J. Cardiovasc. Pharmacol. 15:892–899 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. G. H. Hockerman, B. Z. Peterson, B. D. Johnson, and W. A. Catterall. Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol. 37:361–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. M. L. Garcia, M. J. Trumble, J. P. Reuben, and G. J. Kaczorowski. Characterization of verapamil binding sites in cardiac membrane vesicles. J. Biol. Chem. 259:15013–15016 (1984).

    CAS  PubMed  Google Scholar 

  38. H. Nawrath and J. W. Wegener. Kinetics and state-dependent effects of verapamil on cardiac L-type calcium channels. Naunyn–Schmiedebergs Arch. Pharmacol. 355:79–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. T. J. Campbell and K. M. Williams. Therapeutic drug monitoring: antiarrhythmic drugs. Br. J. Clin. Pharmacol. 46:307–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. A. Sugiyama, Y. Satoh, and K. Hashimoto. Acute electropharmacological effects of intravenously administered amiodarone assessed in the in vivo canine model. Jpn. J. Pharmacol. 87:74–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. P. Guiraudou, S. C. Pucheu, R. Gayraud, P. Gautier, A. Roccon, J. M. Herbert, and D. Nisato. Involvement of nitric oxide in amiodarone- and dronedarone-induced coronary vasodilation in guinea pig heart. Eur. J. Pharmacol. 496:119–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. D. Balayssac, N. Authier, A. Cayre, and F. Coudore. Does inhibition of P-glycoprotein lead to drug–drug interactions? Toxicol. Lett. 156:319–329 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for insightful comments. Pakawadee Sermsappasuk is supported by a Royal Thai Government scholarship under the Committee Staff Development Project of Commission on Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sermsappasuk, P., Abdelrahman, O. & Weiss, M. Modeling Cardiac Uptake and Negative Inotropic Response of Verapamil in Rat Heart: Effect of Amiodarone. Pharm Res 24, 48–57 (2007). https://doi.org/10.1007/s11095-006-9117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9117-z

Key words

Navigation