Pharmaceutical Research

, Volume 23, Issue 12, pp 2709–2728 | Cite as

A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics

  • Gilles Dumortier
  • Jean Louis Grossiord
  • Florence Agnely
  • Jean Claude Chaumeil
Review Article



Poloxamer 407 copolymer (ethylene oxide and propylene oxide blocks) shows thermoreversible properties, which is of the utmost interest in optimising drug formulation (fluid state at room temperature facilitating administration and gel state above sol–gel transition temperature at body temperature promoting prolonged release of pharmacological agents). Pharmaceutical evaluation consists in determining the rheological behaviour (flow curve or oscillatory studies), sol–gel transition temperature, in vitro drug release using either synthetic or physiological membrane and (bio)adhesion characteristics. Poloxamer 407 formulations led to enhanced solubilisation of poorly water-soluble drugs and prolonged release profile for many galenic applications (e.g., oral, rectal, topical, ophthalmic, nasal and injectable preparations) but did not clearly show any relevant advantages when used alone. Combination with other excipients like Poloxamer 188 or mucoadhesive polymers promotes Poloxamer 407 action by optimising sol–gel transition temperature or increasing bioadhesive properties. Inclusion of liposomes or micro(nano)particles in Poloxamer 407 formulations offers interesting prospects, as well. Besides these promising data, Poloxamer 407 has been held responsible for lipidic profile alteration and possible renal toxicity, which compromises its development for parenteral applications. In addition, new findings have demonstrated immuno-modulation and cytotoxicity-promoting properties of Poloxamer 407 revealing significant pharmacological interest and, hence, human trials are in progress to specify these potential applications.

Key words

adhesion copolymer gelation prolonged drug delivery rheology 


  1. 1.
    E. Ruel-Gariepy and J. C. Leroux. In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58(2):409–426 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    A. A. Koffi, F. Agnely, G. Ponchel, and J. L. Grossiord. Modulation of the rheological and mucoadhesive properties of thermosensitive poloxamer-based hydrogels intended for the rectal administration of quinine. Eur. J. Pharm. Sci. 27(4):328–335 (2006).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Dumortier, N. El Kateb, M. Sahli, S. Kedjar, A. Boulliat, and J. C. Chaumeil. Development of a thermogelling ophthalmic formulation of cysteine. Drug Dev. Ind. Pharm. 32(1):63–72 (2006).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Dumortier, M. Zuber, N. Barges, F. Chast, H. Dutertre, and J. C. Chaumeil. Lacrimal and plasmatic kinetics of morphine after an ophthalmic delivery of three different formulations. Drug Dev. Ind. Pharm. 20(7):1147–1158 (1994).Google Scholar
  5. 5.
    R. Rowe, P. Sheskey, and S. Owen. Pharmaceutical Handbook of Pharmaceutical Excipients, 5th edn., Pharmaceutical, London UK and American Pharmaceutical Association, Washington, USA, 2005.Google Scholar
  6. 6.
    A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release. 82(2–3):189–212 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    Z. Takats, K. Vekey, and L. Hegedus. Qualitative and quantitative determination of poloxamer surfactants by mass spectrometry. Rapid Commun. Mass Spectrom. 15(10):805–810 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    S. M. Moghimi and A. C. Hunter. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 18(10):412–420 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Dumortier, J. L. Grossiord, M. Zuber, G. Couarraze, and J. C. Chaumeil. Thermoreversible morphine gel. Drug Dev. Ind. Pharm. 17(9):1255–1265 (1991).Google Scholar
  10. 10.
    J. Juhasz, V. Lenaerts, P. Raymond, and H. Ong. Diffusion of rat atrial natriuretic factor in thermoreversible poloxamer gels. Biomaterials 10(4):265–268 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Liu and B. Chu. Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition. J. Appl. Cryst. 33:727–730 (2000).CrossRefGoogle Scholar
  12. 12.
    T. Moore, S. Croy, S. Mallapragada, and N. Pandit. Experimental investigation and mathematical modeling of Pluronic F127 gel dissolution, drug release in stirred systems. J. Control. Release 67(2–3):191–202 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    S. D. Desai and J. Blanchard. In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine. J. Pharm. Sci. 87(2):226–230 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    E. Dimitrova, S. Bogdanova, M. Mitcheva, I. Tanev, and E. Minkov. Development of model aqueous ophthalmic solution of indomethacin. Drug Dev. Ind. Pharm. 26(12):1297–1301 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    M. L. Veyries, G. Couarraze, S. Geiger, F. Agnely, L. Massias, B. Kunzli, and F. Faurisson. Controlled release of vancomycin from poloxamer 407 gels. Int. J. Pharm. 192(2):183–193 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    W. Saski and S. G. Shah. Availability of drug in the presence of surface active agents. I. Critical micelle concentration of some oxyethylene–oxypropylene polymers. J. Pharm. Sci. 54:71–74 (1965).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Huang, B. P. Lee, D. R. Ingram, and P. B. Messersmith. Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. Biomacromolecules 3(2):397–406 (2002).PubMedCrossRefGoogle Scholar
  18. 18.
    N. Pandit, T. Trygstad, S. Croy, M. Bohorquez, and C. Koch. Effect of salts on the micellization, clouding, and solubilization behavior of Pluronic F127 solutions. J. Colloid Interface Sci. 222(2):213–220 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    J. A. Anderson. Micelle formation by oxyethylene–oxypropylene polymers. Pharm. Acta Helv. 47:304–308 (1972).PubMedGoogle Scholar
  20. 20.
    D. Attwood, J.H. Collett, and C.J. Tait. The micellar properties of the poly(oxyethylene)–poly(oxypropylene) copolymer Pluronic F 127 in water and electrolyte solution. Int. J. Pharm. 26:25–33 (1985).CrossRefGoogle Scholar
  21. 21.
    M. Bohorquez, C. Koch, T. Trygstad, and N. Pandit. A study of the temperature-dependent micellization of Pluronic F127. J. Colloid Interface Sci. 216(1):34–40 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    C. McDonald and C. K. Wong. The effect of temperature on the micellar properties of a polyoxyethylene–polyoxypropylene polymer in water. J. Pharm. Pharmacol. 26:556–557 (1974).Google Scholar
  23. 23.
    C. McDonald and C. K. Wong. Surface tension and light scattering studies on polyoxyethylene–polyoxypropylene copolymers in water. Aust. J. Pharm. Sci. 6:85–89 (1977).Google Scholar
  24. 24.
    J. M. Barichello, M. Morishita, K. Takayama, Y. Chiba, S. Tokiwa, and T. Nagai. Enhanced rectal absorption of insulin-loaded Pluronic F-127 gels containing unsaturated fatty acids. Int. J. Pharm. 183(2):125–132 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    J. M. Barichello, M. Morishita, K. Takayama, and T. Nagai. Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. Int. J. Pharm. 184(2):189–198 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    R. G. Strickley. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21(2):201–230 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    S. C. Shin and C. W. Cho. Physicochemical characterizations of piroxicam–poloxamer solid dispersion. Pharm. Dev. Technol. 2(4):403–407 (1997).PubMedGoogle Scholar
  28. 28.
    S. Chutimaworapan, G. C. Ritthidej, E. Yonemochi, T. Oguchi, and K. Yamamoto. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev. Ind. Pharm. 26(11):1141–1150 (2000).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Rouchotas, O. E. Cassidy, and G. Rowley. Comparison of surface modification and solid dispersion techniques for drug dissolution. Int. J. Pharm. 195(1–2):1–6 (2000).PubMedCrossRefGoogle Scholar
  30. 30.
    T. L. Rogers, K. P. Johnston, and R. O. Williams. Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble. Drug Pharm. Dev. Technol. 8(2):187–197(2003).CrossRefGoogle Scholar
  31. 31.
    T. L. Rogers, A. C. Nelsen, M. Sarkari, T. J. Young, K. P. Johnston, and R. O. Williams. Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology, spray-freezing into liquid with atmospheric freeze-drying. Pharm. Res. 20(3):485–493 (2003).PubMedCrossRefGoogle Scholar
  32. 32.
    T. L. Rogers, K. A. Overhoff, P. Shah, P. Santiago, M. J. Yacaman, K. P. Johnston, and R. O. Williams. Micronized powders of a poorly water soluble drug produced by a spray-freezing into liquid-emulsion process. Eur. J. Pharm. Biopharm. 55 (2):161–172 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    M. L. Veyries, F. Faurisson, M. L. Joly-Guillou, and B. Rouveix. Control of staphylococcal adhesion to polymethylmethacrylate and enhancement of susceptibility to antibiotics by poloxamer 407. Antimicrob. Agents Chemother. 44 (4):1093–1096 (2000).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Gilbert, M. V. Jones, D. G. Allison, S. Heys, T. Maira, and P. Wood. The use of poloxamer hydrogels for the assessment of biofilm susceptibility towards biocide treatments. J. Appl. Microbiol. 85(6):985–990 (1998).PubMedGoogle Scholar
  35. 35.
    J. Juhasz, V. Lenaerts, D. Raymond, and O. Huy. Diffusion of natirel factor in thermoreversible poloxamer gels. Biomaterials 2:365–369 (1986).Google Scholar
  36. 36.
    E. A. Pec, Z. G. Wout, and T. P. Johnston. Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat. J. Pharm. Sci. 81(7):626–630 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    P. L. Wang and T. P. Johnston. Enhanced stability of two model proteins in an agitated solution environment using poloxamer 407. J. Parenter. Sci. Technol. 47(4):183–189 (1993).PubMedGoogle Scholar
  38. 38.
    L. E. Bromberg. Interactions among proteins and hydrophobically modified polyelectrolytes. J. Pharm. Pharmacol. 53(4):541–547 (2001).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Katakam and A. K. Banga. Use of poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses. Pharm. Dev. Technol. 2(2):143–149 (1997).PubMedGoogle Scholar
  40. 40.
    L. P. Stratton, A. Dong, M. C. Manning, and J. F. Carpenter. Drug delivery matrix containing native protein precipitates suspended in a poloxamer gel. J. Pharm. Sci. 86(9):1006–1010 (1997).PubMedCrossRefGoogle Scholar
  41. 41.
    W. J. Lin and L. I. Huang. Influence of pluronics on protein-loaded poly(epsilon-caprolactone) microparticles. J. Microencapsul. 18(2):191–197 (2001).PubMedCrossRefGoogle Scholar
  42. 42.
    C. Sturesson and J. Carlfors. Incorporation of protein in PLG-microspheres with retention of bioactivity. J. Control. Release 67(2–3):171–178 (2000).PubMedCrossRefGoogle Scholar
  43. 43.
    M. C. Woodle, M. S. Newman, and F. J. Martin. Liposome leakage and blood circulation, comparison of adsorbed block copolymers with covalent attachment of PEG. Int. J. Pharm. 88:327–34 (1992).CrossRefGoogle Scholar
  44. 44.
    J. D. Castile and K. M. Taylor. Factors affecting the size distribution of liposomes produced by freeze–thaw extrusion. Int. J. Pharm. 188(1):87–95 (1999).PubMedCrossRefGoogle Scholar
  45. 45.
    J. D. Castile, K. M. Taylor, and G. Buckton. A high sensitivity differential scanning calorimetry study of the interaction between poloxamers and dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes. Int. J. Pharm. 182(1):101–110 (1999).PubMedCrossRefGoogle Scholar
  46. 46.
    J. D. Castile, K. M. Taylor, and G. Buckton. The influence of incubation temperature and surfactant concentration on the interaction between dimyristoylphosphatidylcholine liposomes and poloxamer surfactants. Int. J. Pharm. 221(1–2):197–209 (2001).PubMedCrossRefGoogle Scholar
  47. 47.
    P. Chandaroy, A. Sen, P. Alexandridis, and S. W. Hui. Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome–cell adhesion. Biochim. Biophys. Acta 1559(1):32–42 (2002).PubMedCrossRefGoogle Scholar
  48. 48.
    L. Olivieri, M. Seiller, L. Bromberg, M. Besnard, T. N. Duong, and J. L. Grossiord. Optimization of a thermally reversible W/O/W multiple emulsion for shear-induced drug release. J. Control. Release 88(3):401–412 (2003).PubMedCrossRefGoogle Scholar
  49. 49.
    C. Charrueau, C. Tuleu, V. Astre, J. L. Grossiord, and J. C. Chaumeil. Poloxamer 407 as a thermogelling and adhesive polymer for rectal administration of short-chain fatty acids. Drug Dev. Ind. Pharm. 27(4):351–357 (2001).PubMedCrossRefGoogle Scholar
  50. 50.
    C. S. Yong, J. Choi, Q. Z. Quan, J. D. Rhee, C. K. Kim, S. J. Lim, K. M. Kim, P. S. Oh, and H. G. Choi. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. Int. J. Pharm. 226(1–2):195–205 (2001).PubMedCrossRefGoogle Scholar
  51. 51.
    J. M. Ryu, S. J. Chung, M. H. Lee, C. K. Kim, and C. K. Shim. Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum. J. Control. Release 59(2):163–172 (1999).PubMedCrossRefGoogle Scholar
  52. 52.
    H. Choi, M. Lee, M. Kim, and C. Kim. Effect of additives on the physicochemical properties of liquid suppository bases. Int. J. Pharm. 190(1):13–19 (1999).PubMedCrossRefGoogle Scholar
  53. 53.
    A. M. Le Ray, P. Iooss, A. Gouyette, V. Vonarx, T. Patrice, and C. Merle. Development of a “continuous-flow adhesion cell” for the assessment of hydrogel adhesion. Drug Dev. Ind. Pharm. 25(8):897–904 (1999).PubMedCrossRefGoogle Scholar
  54. 54.
    E. Y. Kim, Z. G. Gao, J. S. Park, H. Li, and K. Han. rhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery. Int. J. Pharm. 233(1–2):159–167 (2002).PubMedCrossRefGoogle Scholar
  55. 55.
    L. Bourre, S. Thibaut, A. Briffaud, Y. Lajat, and T. Patrice. Potential efficacy of a delta 5-aminolevulinic acid thermosetting gel formulation for use in photodynamic therapy of lesions of the gastrointestinal tract. Pharmacol. Res. 45(2):159–165 (2002).PubMedCrossRefGoogle Scholar
  56. 56.
    S. S. Pisal, A. R. Paradkar, K. R. Mahadik, and S. S. Kadam. Pluronic gels for nasal delivery of Vitamin B12. Part I, preformulation study. Int. J. Pharm. 270(1–2):37–45 (2004).PubMedCrossRefGoogle Scholar
  57. 57.
    J. C. Gilbert, J. L. Richarson, M. C. Davies, and K. J. Palin. The effect of solutes and polymers on the gelation properties of Puronic F-127 solutions for controlled drug delivery. J. Control. Release 5:113–118 (1987).CrossRefGoogle Scholar
  58. 58.
    J. Y. Chang, Y. K. Oh, H. G. Choi, Y. B. Kim, and C. K. Kim. Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. Int. J. Pharm. 241(1):155–163 (2002).PubMedCrossRefGoogle Scholar
  59. 59.
    A. Shawesh, S. Kallioinen, O. Antikainen, and J. Yliruusi. Influence of storage time and temperature on the stability of indomethacin Pluronic F-127 gels. Pharmazie 57(10):690–694 (2002).PubMedGoogle Scholar
  60. 60.
    S. C. Chi and H. W. Jun. Anti-inflammatory activity of ketoprofen gel on carrageenan-induced paw edema in rats. J. Pharm. Sci. 79:974–977 (1990).PubMedCrossRefGoogle Scholar
  61. 61.
    S. C. Chi and H. W. Jun. Release rates of ketoprofen from poloxamer gels in a membraneless diffusion cell. J. Pharm. Sci. 80(3):280–283 (1991).PubMedCrossRefGoogle Scholar
  62. 62.
    S.C. Miller and B.R. Drabik. Rheological properties of poloxamer vehicles. Int. J. Pharm. 18:269–276. (1984).CrossRefGoogle Scholar
  63. 63.
    V. Lenaerts, C. Triqueneaux, M. Quarton, F. Rieg-Falson, and P. Couvreur. Temperature-dependant rheological behavior of Puronic F-127 aqueous solutions. Int. J. Pharm. 39:121–127 (1987).CrossRefGoogle Scholar
  64. 64.
    K. Edsman, J. Carlfors, and R. Petersson. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur. J. Pharm. Sci. 6(2):105–112 (1998).PubMedCrossRefGoogle Scholar
  65. 65.
    G. Wei, H. Xu, P. T. Ding, S. M. Li, and J. M. Zheng. Thermosetting gels with modulated gelation temperature for ophthalmic use, the rheological and gamma scintigraphic studies J. Control. Release 83(1):65–74 (2002).PubMedCrossRefGoogle Scholar
  66. 66.
    E. J. Ricci, M. V. Bentley, M. Farah, R. E. Bretas, and J. M. Marchetti. Rheological characterization of Poloxamer 407 lidocaine hydrochloride gels. Eur. J. Pharm. Sci. 17(3):161–167 (2002).PubMedCrossRefGoogle Scholar
  67. 67.
    A. Cabana, A. Aït-Kadi, and J. Juhász. Study of the gelation process of polyethylene oxidea–polypropylene oxideb–polyethylene oxidea (poloxamer 407) aqueous solutions. J. Colloid Interface Sci. 190:307–312 (1997).PubMedCrossRefGoogle Scholar
  68. 68.
    R. Bhardwaj and J. Blanchard. Controlled-release delivery system for the alpha-MSH analog melanotan-I using poloxamer 407. J. Pharm. Sci. 85(9):915–919 (1996).PubMedCrossRefGoogle Scholar
  69. 69.
    Y. J. Park, C. S. Yong, H. M. Kim, J. D. Rhee, Y. K. Oh, C. K. Kim, and H. G. Choi. Effect of sodium chloride on the release, absorption and safety of diclofenac sodium delivered by poloxamer gel. Int. J. Pharm. 263(1–2):105–111 (2003).PubMedCrossRefGoogle Scholar
  70. 70.
    A. M. El Gendy, H. W. Jun, and A. A. Kassem. In vitro release studies of flurbiprofen from different topical formulations. Drug Dev. Ind. Pharm. 28(7):823–831 (2002).PubMedCrossRefGoogle Scholar
  71. 71.
    A. Paavola, I. Kilpelainen, J. Yliruusi, and P. Rosenberg. Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int. J. Pharm. 199(1):85–93 (2000).PubMedCrossRefGoogle Scholar
  72. 72.
    A. Takahashi, S. Suzuki, N. Kawasaki, W. Kubo, S. Miyazaki, R. Loebenberg, J. Bachynsky, and D. Attwood. Percutaneous absorption of non-steroidal anti-inflammatory drugs from in situ gelling xyloglucan formulations in rats. Int. J. Pharm. 246(1–2):179–186 (2002).PubMedCrossRefGoogle Scholar
  73. 73.
    T. P. Johnston, M. A. Punjabi, and C. J. Froelich. Sustained delivery of interleukin-2 from a poloxamer 407 gel matrix following intraperitoneal injection in mice. Pharm. Res. 9(3):425–434 (1992).PubMedCrossRefGoogle Scholar
  74. 74.
    M. Morishita, J. M. Barichello, K. Takayama, Y. Chiba, S. Tokiwa, and T. Nagai. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int. J. Pharm. 212(2):289–293 (2001).PubMedCrossRefGoogle Scholar
  75. 75.
    S. Proniuk, S. E. Dixon, and J. Blanchard. Investigation of the utility of an in vitro release test for optimizing semisolid dosage forms. J. Pharm. Dev. Technol. 6(3):469–476 (2001).CrossRefGoogle Scholar
  76. 76.
    A. Paavola, J. Yliruusi, Y. Kajimoto, E. Kalso, T. Wahlstrom, and P. Rosenberg. Controlled release of lidocaine from injectable gels and efficacy in rat sciatic nerve block. Pharm. Res. 12(12):1997–2002 (1995).PubMedCrossRefGoogle Scholar
  77. 77.
    P. C. Chen, D. S. Kohane, Y. J. Park, R. H. Bartlett, R. Langer, and V. C. Yang. Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J. Biomed. Mater. Res. 70A(3):459–466 (2004).CrossRefGoogle Scholar
  78. 78.
    E. J. Ricci, L. O. Lunardi, D. M. Nanclares, and J. M. Marchetti. Sustained release of lidocaine from Poloxamer 407 gels. Int. J. Pharm. 288(2):235–244 (2005).PubMedCrossRefGoogle Scholar
  79. 79.
    T. Abe, M. Sasaki, H. Nakajima, M. Ogita, H. Naitou, A. Nagase, K. Taguchi, and S. Miyazaki. Evaluation of pluronic F127 as a base for gradual release of anticancer drug. Gan To Kagaku Ryoho 17(8):1546–1550 (1990).PubMedGoogle Scholar
  80. 80.
    A. Bochot, E. Fattal, A. Gulik, G. Couarraze, and P. Couvreur. Liposomes dispersed within a thermosensitive gel, a new dosage form for ocular delivery of oligonucleotides. Pharm. Res. 15(9):1364–1369 (1998).PubMedCrossRefGoogle Scholar
  81. 81.
    M. M. Amiji, P. K. Lai, D. B. Shenoy, and M. Rao. Intratumoral administration of paclitaxel in an in situ gelling poloxamer 407 formulation. Pharm. Dev. Technol. 7(2):195–202 (2002).PubMedCrossRefGoogle Scholar
  82. 82.
    S. D. Desai and J. Blanchard. Evaluation of pluronic F127-based sustained-release ocular delivery systems for pilocarpine using the albino rabbit eye model. J. Pharm. Sci. 87(10):1190–1195 (1998).PubMedCrossRefGoogle Scholar
  83. 83.
    S. Miyazaki, S. Suzuki, N. Kawasaki, K. Endo, A. Takahashi, and D. Attwood. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm. 229(1–2):29–36 (2001).PubMedCrossRefGoogle Scholar
  84. 84.
    S. C. Shin, C. W. Cho, and H. K. Choi. Permeation of piroxicam from the poloxamer gels. Drug Dev. Ind. Pharm. 25(3):273–278 (1999).PubMedCrossRefGoogle Scholar
  85. 85.
    F. Fawaz, A. Koffi, M. Guyot, and P. Millet. Comparative in vitroin vivo study of two quinine rectal gel formulations. Int. J. Pharm. 280(1–2):151–162 (2004).PubMedCrossRefGoogle Scholar
  86. 86.
    A. H. El-Kamel. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int. J. Pharm. 241(1):47–55 (2002).PubMedCrossRefGoogle Scholar
  87. 87.
    S. C. Shin and J. Y. Kim. Enhanced permeation of triamcinolone acetonide through the buccal mucosa. Eur. J. Pharm. Biopharm. 50(2):217–220 (2000).CrossRefGoogle Scholar
  88. 88.
    K. A. Fults and T. P. Johnston. Sustained-release of urease from a poloxamer gel matrix. J. Parenter. Sci. Technol. 44(2):58–65 (1990).PubMedGoogle Scholar
  89. 89.
    B. C. Anderson, N. K. Pandit, and S. K. Mallapragada. Understanding drug release from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) gels. J. Control. Release 70(1–2):157–167 (2001).PubMedCrossRefGoogle Scholar
  90. 90.
    X. Xu and P. I. Lee. Programmable drug delivery from an erodible association polymer system. Pharm. Res. 10(8):1144–1152 (1993).PubMedCrossRefGoogle Scholar
  91. 91.
    Y. Mao, M. J. Thompson, Q. Wang, and E. W. Tsai. Quantitation of poloxamers in pharmaceutical formulations using size exclusion chromatography and colorimetric methods J. Pharm. Biomed. Anal. 35(5):1127–1142 (2004).PubMedCrossRefGoogle Scholar
  92. 92.
    S. C. Shin, E. Y. Shin, and C. W. Cho. Enhancing effects of fatty acids on piroxicam permeation through rat skins. Drug Dev. Ind. Pharm. 26(5):563–566 (2000).PubMedCrossRefGoogle Scholar
  93. 93.
    S. C. Shin, C. W. Cho, and I. J. Oh. Effects of non-ionic surfactants as permeation enhancers towards piroxicam from the poloxamer gel through rat skins. Int. J. Pharm. 222(2):199–203 (2001).PubMedCrossRefGoogle Scholar
  94. 94.
    S. C. Shin, J. Y. Kim, and I. J. Oh. Mucoadhesive and physicochemical characterization of Carbopol–Poloxamer gels containing triamcinolone acetonide. Drug Dev. Ind. Pharm. 26(3):307–312 (2000).PubMedCrossRefGoogle Scholar
  95. 95.
    P. Chetoni, L. Panichi, S. Burgalassi, U. Benelli, and M. F. Saettone. Pharmacokinetics and anti-inflammatory activity in rabbits of a novel indomethacin ophthalmic solution. J. Ocular Pharmacol. Ther. 16(4):363–372 (2000).CrossRefGoogle Scholar
  96. 96.
    J. W. Kwon, Y. K. Han, W. J. Lee, C. S. Cho, S. J. Paik, D. I. Cho, J. H. Lee, and W. R. Wee. Biocompatibility of poloxamer hydrogel as an injectable intraocular lens: a pilot study. J. Cataract Refract. Surg. 31(3):607–613 (2005).PubMedCrossRefGoogle Scholar
  97. 97.
    I. Pepic, N. Jalsenjak and I. Jalsenjak. Micellar solutions of triblock copolymer surfactants with pilocarpine. Int. J. Pharm. 272(1–2):57–64 (2004).PubMedCrossRefGoogle Scholar
  98. 98.
    S. D. Desai and J. Blanchard. Pluronic F127-based ocular delivery system containing biodegradable polyisobutylcyanoacrylate nanocapsules of pilocarpine. Drug Deliv. 7(4):201–207 (2000).PubMedCrossRefGoogle Scholar
  99. 99.
    R. M. Nalbandian, R. L. Henry, and H. S. Wilks. Artificial skin II. Pluronic F-127 silver nitrate or silver lactate gel in the treatment of thermal burns. J. Biomed. Mater. Res. 6:583–590 (1972).PubMedCrossRefGoogle Scholar
  100. 100.
    L. H. Marsh, C. Alexander, M. Coke, P. W. Dettmar, M. Havler, T. G .Nevell, J. D. Smart, B. Timmins, and J. Tsibouklis. Adsorbed pluronics on the skin of human volunteers, effects on bacterial adhesion. Int. J. Pharm. 251(1–2):155–163 (2003).PubMedCrossRefGoogle Scholar
  101. 101.
    S. Miyazaki, T. Tobiyama, M. Takada, and D. Attwood. Percutaneous absorption of indomethacin from pluronic F127 gels in rats. J. Pharm. Pharmacol. 47(6):455–457 (1995).PubMedGoogle Scholar
  102. 102.
    S. Shin, C. Cho, and I. Oh. Enhanced efficacy by percutaneous absorption of piroxicam from the poloxamer gel in rats. Int. J. Pharm. 193(2):213–218 (2000).CrossRefGoogle Scholar
  103. 103.
    H. Suh, H. W. Jun, M. T. Dzimianski, and G. W. Lu. Pharmacokinetic and local tissue disposition studies of naproxen—following topical and systemic administration in dogs and rats. Biopharm. Drug Dispos. 18(7):623–633 (1997).PubMedCrossRefGoogle Scholar
  104. 104.
    G. W. Lu, H. W. Jun, M. T. Dzimianski, H. C. Qiu, and J. W. McCall. Pharmacokinetic studies of methotrexate in plasma and synovial fluid following i.v. bolus and topical routes of administration in dogs. Pharm. Res. 12(10):1474–1477 (1995).PubMedCrossRefGoogle Scholar
  105. 105.
    A. F. El-Kattan, C. S. Asbill, N. Kim, and B. B. Michniak. Effect of formulation variables on the percutaneous permeation of ketoprofen from gel formulations. Drug Deliv. 7(3):147–153 (2000).PubMedCrossRefGoogle Scholar
  106. 106.
    P. Wuthrich, M. Martenet, and P. Buri. Effect of formulation additives upon the intranasal bioavailability of a peptide drug, tetracosactide (ACTH1-24). Pharm. Res. 11(2):278–282 (1994).PubMedCrossRefGoogle Scholar
  107. 107.
    J. G. Wenzel, K. S. Balaji, K. Koushik, C. Navarre, S. Duran, C. H. Rahe, and U. B. Kompella. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Release 85(1–3):51–59 (2002).PubMedCrossRefGoogle Scholar
  108. 108.
    A. B. Saim, Y. Cao, Y. Weng, C. N. Chang, M. A. Vacanti, C. A. Vacanti, and R. D. Eavey. Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 110(10):1694–1697 (2000).PubMedCrossRefGoogle Scholar
  109. 109.
    Y. Wang, S. Liu, C. Y. Li, and F. Yuan. A novel method for viral gene delivery in solid tumors. Cancer Res. 65(17):7541–7545 (2005).PubMedGoogle Scholar
  110. 110.
    S. N. Robinson, J. M. Chavez, J. M. Blonder, V. M. Pisarev, R. L. Mosley, H. Sang, G. J. Rosenthal, and J. E. Talmadge. Hematopoietic progenitor cell mobilization in mice by sustained delivery of granulocyte colony-stimulating factor. J. Interferon Cytokine Res. 25(8):490–500 (2005).PubMedCrossRefGoogle Scholar
  111. 111.
    J. Raymond, A. Metcalfe, I. Salazkin, and A. Schwarz. Temporary vascular occlusion with poloxamer 407. Biomaterials 25(18):3983–3989 (2004).PubMedCrossRefGoogle Scholar
  112. 112.
    M. Varshney, T. E. Morey, D. O. Shah, J. A. Flint, B. M. Moudgil, C. N. Seubert, and D. M. Dennis. Pluronic microemulsions as nanoreservoirs for extraction of bupivacaine from normal saline. J. Am. Chem. Soc. 126(16):5108–5112 (2004).PubMedCrossRefGoogle Scholar
  113. 113.
    E. B. Fowler, M. F. Cuenin, S. D. Hokett, M. E. Peacock, J. C. McPherson, T. R. Dirksen, M. Sharawy, and M. A. Billman. Evaluation of pluronic polyols as carriers for grafting materials, study in rat calvaria defects. J. Periodontol. 73(2):191–197 (2002).PubMedCrossRefGoogle Scholar
  114. 114.
    C. M. Clokie and Urist M. R. Bone morphogenetic protein excipients, comparative observations on poloxamer. Plast. Reconstr. Surg. 105(2):628–637 (2000).PubMedCrossRefGoogle Scholar
  115. 115.
    C. A. Arevalo-Silva, R. D. Eavey, Y. Cao, M. Vacanti, Y. Weng, and C. A. Vacanti. Internal support of tissue-engineered cartilage. Arch. Otolaryngol. Head Neck Surg. 126(12):1448–1452 (2000).PubMedGoogle Scholar
  116. 116.
    S. D. Hokett, M. F. Cuenin, R. B. O’Neal, W. A. Brennan, S.L. Strong, R. R. Runner, J. C. McPherson, and T. E. Van Dyke. Pluronic polyol effects on human gingival fibroblast attachment and growth. J. Periodontol. 71(5):803–809 (2000).PubMedCrossRefGoogle Scholar
  117. 117.
    M. A. Westerink, S. L. Smithson, N. Srivastava, J. Blonder, C. Coeshott, and G. J. Rosenthal. ProJuvant (Pluronic F127/chitosan) enhances the immune response to intranasally administered tetanus toxoid. Vaccine 20(5–6):711–723 (2001).PubMedCrossRefGoogle Scholar
  118. 118.
    A. V. Kabanov, P. Lemieux, S. Vinogradov, and V. Alakhov. Pluronic block copolymers, novel functional molecules for gene therapy. Adv. Drug Deliv. Rev. 54(2):223–233 (2002).PubMedCrossRefGoogle Scholar
  119. 119.
    C. W. Cho, Y. S. Cho, B. T. Kang, J. S. Hwang, S. N. Park, and D. Y. Yoon. Improvement of gene transfer to cervical cancer cell lines using non-viral agents. Cancer Lett. 162(1):75–85 (2001).PubMedCrossRefGoogle Scholar
  120. 120.
    S. M. Moghimi. Re-establishing the long circulatory behaviour of poloxamine-coated particles after repeated intravenous administration, applications in cancer drug delivery and imaging. Biochim. Biophys. Acta 1472(1–2):399–403 (1999).PubMedGoogle Scholar
  121. 121.
    S. M. Moghimi. Modulation of lymphatic distribution of subcutaneously injected poloxamer 407-coated nanospheres. FEBS Lett. 540(1–3):241–244 (2003).PubMedCrossRefGoogle Scholar
  122. 122.
    S. Stolnik, B. Daudali, A. Arien, J. Whetstone, C. R. Heald, M. Garnett, S. S. Davis, and L. Illum. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers Biochim. Biophys. Acta 1514(2):261–279 (2001).PubMedCrossRefGoogle Scholar
  123. 123.
    C. J. Porter, S. M. Moghimi, L. Illum, and S. S. Davis. The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett. 305(1):62–66 (1992).PubMedCrossRefGoogle Scholar
  124. 124.
    J. Lode, I. Fichtner, J. Kreuter, A. Berndt, J. E. Diederichs, and R. Reszka. Influence of surface-modifying surfactants on the pharmacokinetic behavior of 14C-poly (methylmethacrylate) nanoparticles in experimental tumor models. Pharm. Res. 18(11):1613–1619 (2001).PubMedCrossRefGoogle Scholar
  125. 125.
    H. M. Redhead, S. S. Davis, and L. Illum. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908, in vitro characterisation and in vivo evaluation. J. Control. Release 70(3):353–363 (2001).PubMedCrossRefGoogle Scholar
  126. 126.
    J. K. Jackson, C. M. Springate, W. L. Hunter, and H. M. Burt. Neutrophil activation by plasma opsonized polymeric microspheres, inhibitory effect of pluronic F127. Biomaterials 21(14):1483–1491 (2000).PubMedCrossRefGoogle Scholar
  127. 127.
    P. Lemieux, N. Guerin, G. Paradis, R. Proulx, L. Chistyakova, A. Kabanov, and V. Alakhov. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther. 7(11):986–991 (2000).PubMedCrossRefGoogle Scholar
  128. 128.
    S. Danson, D. Ferry, V. Alakhov, J. Margison, D. Kerr, D. Jowle, M. Brampton, G. Halbert, and M. Ranson. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer 90(11):2085–2091 (2004).PubMedGoogle Scholar
  129. 129.
    C. Li, W. K. Palmer, and T. P. Johnston. Disposition of poloxamer 407 in rats following a single intraperitoneal injection assessed using a simplified colorimetric assay. J. Pharm. Biomed. Anal. 14(5):659–665 (1996).PubMedCrossRefGoogle Scholar
  130. 130.
    T.P. Johnston and W.K. Palmer. Effect of poloxamer 407 on the activity of microsomal 3-hydroxy-3-methylglutaryl CoA reductase in rats. J. Cardiovasc. Pharmacol. 29(5):580–585 (1997).PubMedCrossRefGoogle Scholar
  131. 131.
    T. P. Johnston, J. Baker, A. S. Jamal, D. Hall, E. E. Emeson, and W. K. Palmer. Potential downregulation of HMG-CoA reductase after prolonged administration of P-407 in C57BL/6 mice. J. Cardiovasc. Pharmacol. 34(6):831–842 (1999).PubMedCrossRefGoogle Scholar
  132. 132.
    T. P. Johnston, J. C. Baker, D. Hall, S. Jamal, W. K. Palmer, and E. E. Emeson. Regression of poloxamer 407-induced atherosclerotic lesions in C57BL/6 mice using atorvastatin. Atherosclerosis 149(2):303–313 (2000).PubMedCrossRefGoogle Scholar
  133. 133.
    T. P. Johnston, L. B. Nguyen, W. A. Chu, and S. Shefer. Potency of select statin drugs in a new mouse model of hyperlipidemia and atherosclerosis. Int. J. Pharm. 229(1–2):75–86 (2001).PubMedCrossRefGoogle Scholar
  134. 134.
    T. P. Johnston, J. W. Coker, B. J. Paigen, and O. Tawfik. Sex does not seem to influence the formation of aortic lesions in the P-407-induced mouse model of hyperlipidemia and atherosclerosis. J. Cardiovasc. Pharmacol. 39(3):404–411 (2002).PubMedCrossRefGoogle Scholar
  135. 135.
    W.K. Palmer, E.E. Emeson, and T.P. Johnston. The poloxamer 407-induced hyperlipidemic atherogenic animal model. Med. Sci. Sports Exerc. 29(11):1416–1421 (1997).PubMedGoogle Scholar
  136. 136.
    W. K. Palmer, E. E. Emeson, and T. P. Johnston. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis 136(1):115–123 (1998).PubMedCrossRefGoogle Scholar
  137. 137.
    D. R. Brocks and K. M. Wasan. The influence of lipids on stereoselective pharmacokinetics of halofantrine: important implications in food-effect studies involving drugs that bind to lipoproteins. J. Pharm. Sci. 91(8):1817–1826 (2002).PubMedCrossRefGoogle Scholar
  138. 138.
    R. J. Ramirez, J. Novak, T. P. Johnston, R. E. Gandley, M. K. McLaughlin, and C. A. Hubel. Endothelial function and myogenic reactivity in small mesenteric arteries of hyperlipidemic pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281(4):R1330–R1337 (2001).PubMedGoogle Scholar
  139. 139.
    J. M. Blonder, L. Baird, J. C. Fulfs, and G. J. Rosenthal. Dose-dependent hyperlipidemia in rabbits following administration of poloxamer 407 gel. Life Sci. 65(21):PL261–PL266 (1999).PubMedCrossRefGoogle Scholar
  140. 140.
    L. A. Eliot, R. T. Foster, and F. Jamali. Effects of hyperlipidemia on the pharmacokinetics of nifedipine in the rat. Pharm. Res. 16(2):309–313 (1999).PubMedCrossRefGoogle Scholar
  141. 141.
    L. A. Eliot and F. Jamali. Pharmacokinetics and pharmacodynamics of nifedipine in untreated and atorvastatin-treated hyperlipidemic rats. J. Pharmacol. Exp. Ther. 291(1):188–193 (1999).PubMedGoogle Scholar
  142. 142.
    T. P. Johnston, H. Beris, and J. L. Kennedy. Effects on splenic, hepatic, hematological, and growth parameters following high-dose poloxamer 407 administration to rats. Int. J. Pharm. 100:279–284 (1993).CrossRefGoogle Scholar
  143. 143.
    T. P. Johnston and S. C. Miller. Toxicological evaluation of poloxamer vehicles for intra-muscular use. J. Parenter. Sci. Tech. 39:83–88 (1985).Google Scholar
  144. 144.
    T. P. Johnston and S. C. Miller. Inulin disposition following intramuscular administration of an inulin/poloxamer gel matrix. J. Parenter. Sci. Technol. 43(6):279–286 (1989).PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Gilles Dumortier
    • 1
  • Jean Louis Grossiord
    • 2
  • Florence Agnely
    • 2
  • Jean Claude Chaumeil
    • 1
  1. 1.Laboratoire de Galénique, UPRES EA 2498Faculté des Sciences Pharmaceutiques et Biologiques (Université Paris 5)Paris Cedex 06France
  2. 2.Laboratoire de Physique Pharmaceutique, UMR CNRS 8612Faculté de Pharmacie (Université Paris Sud XI)Châtenay-Malabry, ParisFrance

Personalised recommendations