Skip to main content

Advertisement

Log in

Mechanisms Responsible for Poor Oral Bioavailability of Paeoniflorin: Role of Intestinal Disposition and Interactions with Sinomenine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine the intestinal disposition mechanisms of paeoniflorin, a bioactive glucoside, and to investigate the mechanisms by which sinomenine increases paeoniflorin bioavailability.

Materials and Methods

A single-pass “four-site” rat intestinal perfusion model and a cultured Caco-2 cell model were employed.

Results

In both model systems, paeoniflorin permeability was poor. In the perfusion model, maximal absorption and metabolism of paeoniflorin occurred in duodenum and jejunum, which were significantly decreased by a glucosidase inhibitor gluconolactone (20 mM). On the other hand, paeoniflorin absorption in terminal ileum increased significantly but its metabolism did not in the presence of sinomenine and cyclosporine A. In the Caco-2 cell model, paeoniflorin was transported 48-fold slower than its aglycone (paeoniflorigenin). Absorptive transport of paeoniflorin was significantly (p < 0.05) increased by sinomenine (38%), verapamil (27%), and cyclosporine A (41%), whereas its secretory transport was significantly (p < 0.01) decreased by sinomenine (50%), verapamil (35%) and cyclosporine A (37%). In contrast, MRP inhibitors MK-571 and leukotriene C4 did not affect transport of paeoniflorin. Lastly, sinomenine was also shown to significantly increase the absorptive transport of digoxin (a prototypical p-glycoprotein substrate) and to significantly decrease its secretory transport.

Conclusions

Poor permeation, p-gp-mediated efflux, and hydrolysis via a glucosidase contributed to the poor bioavailability of paeoniflorin. Sinomenine (an inhibitor of the p-gp-mediated digoxin efflux) increased paeoniflorin's bioavailability via the inhibition of p-gp-mediated paeoniflorin efflux in the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Yamahara, T. Yamada, H. Kimura, T. Sawada, and H. Fujimura. Biologically active principles of crude drug. II. Anti-allergic principles in “Shoseir-yu-To” anti-inflammatory properties of paeoniflorin and its derivatives. J. Pharmacobio-Dyn. 5:921–929 (1982).

    PubMed  CAS  Google Scholar 

  2. M. Kimura, I. Kimura, and H. Nojima. Depolarizing neuromuscular blocking action induced by electropharmacological coupling in the combined effect of paeoniflorin and glycyrrhizin. Jpn. J. Pharmacol. 37:395–397 (1984).

    Google Scholar 

  3. S. Takeda, T. Isono, Y. Wakui, Y. Matsuzaki, H. Sasaki, and S. Amagaya. Absorption and excretion of paeoniflorin in rats. J. Pharm. Pharmacol. 47:1036–1040 (1995).

    PubMed  CAS  Google Scholar 

  4. S. Takeda, T. Isono, Y. Wakui, Y. Mizuhara, S. Amagaya, M. Maruno, and M. Hattori. In-vivo assessment of extrahepatic metabolism of paeoniflorin in rats: relevance to intestinal floral metabolism. J. Pharm. Pharmacol. 49:35–39 (1997).

    PubMed  CAS  Google Scholar 

  5. Z. Q. Liu, H. Zhou, L. Liu, Z. H. Jiang, Y. F. Wong, Y. Xie, X. Cai, H. X. Xu, and K. C. Chan. The pharmacokinetic fate of paeoniflorin influenced by co-administration of sinomenine in unrestrained conscious rats. J. Ethnopharmaco. 99:61–67 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. L. C. Chen, M. H. Lee, M. H. Chou, M. F. Lin, and L. L. Yang. Pharmacokinetic study of paeoniflorin in mice after oral administration of Paeoniae radix extract. J. Chromatogr. B. 735:33–40 (1999).

    Article  CAS  Google Scholar 

  7. L. C. Chen, M. H. Chou, M. F. Lin, and L. L. Yang. Pharmacokinetics of paeoniflorin after oral administration of Shao-yao Gan-cha Tang in mice. Jpn. J. Pharmacol. 88:250–255 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. S. L. Hsiu, Y. T. Lin, K. C. Wen, Y. C. Hou, and P. D. Chao. A deglucosylated metabolite of paeoniflorin of the root of Paeonia lactiflora and its pharmacokinetics in rats. Planta Med. 69:1113–1118 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. M. Hattori, Y. Z. Shu, M. Shimizu, T. Hayashi, N. Morita, X. G. Kobashi, and T. Namba. Metabolism of paeoniflorin and related compounds by human intestinal bacteria. Chem. Pharm. Bull. 33:3838–3846 (1985).

    PubMed  CAS  Google Scholar 

  10. Y. Z. Shu, M. Hattori, T. Akao, K. Kobashi, K. Kagi, K. Fukuyama, T. Tsukihara, and T. Namba. Metabolism of paeoniflorin and related compounds by human intestinal bacteria. II. Structures of 7S-and 7R-paeonimetabolines I and II formed by Bacteroides fragillis and Lactobacillus brevis. Chem. Pharm. Bull. 35:2733– 3726 (1987).

    PubMed  CAS  Google Scholar 

  11. K. Chan, Z. Q. Liu, Z. H. Jiang, H. Zhou, Y. F. Wong, H. X. Xu, and L. Liu. The effects of sinomenine on intestinal absorption of paeoniflorin by everted rat gut sac model. J. Ethnopharmacol. 103:425–432 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Z. Tai, and S. J. Hopkins. Sinomenine: antiarthritic antiinflammatory. Drugs Future 23:45–49 (1998).

    Article  CAS  Google Scholar 

  13. L. Liu, J. Riese, K. Resch, and V. Kaever. Impairment of macrophage eicosanoid and nitric oxide production by sinomenine, an alkaloid from Sinomenium acutum. Arzneim.-Forsch. 44(11):1223–1226 (1994).

    CAS  Google Scholar 

  14. B. Vieregge, K. Resch, and V. Kaever. Synergistic effects of the alkaloid sinomenine in combination with the immunosuppressive drugs tacrolimus and mycophenolic acid. Planta Med. 44:1223–1226 (1999).

    Google Scholar 

  15. L. Liu, K. Resch, and V. Kaever. Inhibition of lymphocyte proliferation by the anti-rheumatic drug sinomenine. Int. J. Immunopharmacol. 16:685–691 (1996).

    Article  Google Scholar 

  16. M. Hu, J. Chen, D. Tran, Y. Zhu, and G. Lenonardo. The Caco-2 cell monolayers as an intestinal metabolism model: metabolism of dipeptide Phe-Pro. J. Drug Target. 2:79–89 (1994).

    PubMed  CAS  Google Scholar 

  17. M. Hu, J. Chen, Y. Zhu, A. H. Dantzig, R. E. Stratford, and M. T. Kuhfeld. Mechanism and kinetics of transcellular transport of a new β-lactam antibiotic loracarbef across an human intestinal epithelial model system (Caco-2). Pharm. Res.(NY) 11:1405–1413 (1994).

    CAS  Google Scholar 

  18. J. Chen, H. Lin, and M. Hu. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J. Pharmacol. Exp. Ther. 304:1228–1235 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. E. J. Jeong, X. B. Jia, and M. Hu. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell model. Mol. Pharmacol. 2:319–328 (2005).

    Article  CAS  Google Scholar 

  20. E. J. Jeong, Y. Liu, H. Lin, and M. Hu. In situ single-pass perfused rat intestinal model for absorption and metabolism. In Z. Yan and G. W. Caldwell (eds.), In Methods in Pharmacology and Toxicology: Optimization in Drug Discovery—In Vitro Methods, Human, Totowa, NJ, 2004, pp. 65–76.

    Google Scholar 

  21. M. Hu, K. Ge, L. Roland, J. Chen, P. Tyle, and S. Roy. Determination of absorption characteristics of AG337, a novel thymidylate synthase inhibitor, using a perfused rat intestinal model. J. Pharm. Sci. 87:886–890 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. M. Hu, P. J. Sinko, A. L. J. DeMeere, D. A. Johnson, and G. L. Amidon. Membrane permeability parameters for some amino acids and β-lactam antibiotics: application of the boundary layer approach. J. Theor. Biol. 131:107–114 (1988).

    PubMed  CAS  Google Scholar 

  23. T. Tanaka, S. Takase, and T. Goda. A possible role of a nuclear factor NF-LPH1 in the regional expression of lactase-phlorizin hydrolase along the small intestine. J. Nutr. Sci. Vitaminol. (Tokyo) 43:565–573 (1997).

    CAS  Google Scholar 

  24. E. Liang, J. Proudfoot, and M. Yazdanian. Mechanisms of transport and structure–permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Pharm. Res. 17:1168–1174 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. Y. Liu, Y. Liu, Y. Dai, L. Y. Xun, and M. Hu. Enteric disposition and recycling of flavonoids and ginkgo flavonoids. J. Altern. Complement. Med. 9:631–640 (2003).

    Article  Google Scholar 

  26. Y. Zhang, A. Gupta, H. Wang, L. Zhou, R. R. Vethanayagam, J. D. Unadkat, and Q. Mao. BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm. Res. 22:2023–2034 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. G. T. Ho, F. M. Moodie, and J. Satsangi. Multidrug resistance 1 gene (P-glycoprotein 170): an important determinant in gastrointestinal disease? Gut 52:759–766 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. R. Tian, N. Koyabu, H. Takanaga, H. Matsuo, H. Ohtani, and Y. Sawada. Effects of grapefruit juice and orange juice on the intestinal efflux of P-glycoprotein substrates. Pharm. Res. 19:802–809 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Tanaka, A. L. Slitt, T. M. Leazer, J. M. Maher, and C. D. Klaassen. Tissue distribution and hormonal regulation of the breast cancer resistance protein (Bcrp/Abcg2) in rats and mice. Biochem. Biophys. Res. Commun. 326:181–187 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. B. M. Johnson, P. Zhang, J. D. Schuetz, and K. L. Brouwer. Characterization of transport protein expression in multidrug resistance-associated protein (mrp) 2-deficient rats. Drug Metab. Dispos. 34:556–562 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (ZQL, LL, ZHJ) of JCICM-6-02 from the Hong Kong Jockey Club Charities Trust of Hong Kong and of CA-87779 (MH) from the National Institutes of Health, USA. This work was conducted at University of Houston, College of Pharmacy during a research visit by ZQL. The authors wish to thank Drs. Hong Xi Xu and Hua Zhou for their supports and comments to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Liu or Ming Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z.Q., Jiang, Z.H., Liu, L. et al. Mechanisms Responsible for Poor Oral Bioavailability of Paeoniflorin: Role of Intestinal Disposition and Interactions with Sinomenine. Pharm Res 23, 2768–2780 (2006). https://doi.org/10.1007/s11095-006-9100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9100-8

Key words

Navigation