Skip to main content

Advertisement

Log in

Micronutrient and Urate Transport in Choroid Plexus and Kidney: Implications for Drug Therapy

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Abstract

With application of molecular biology techniques, there has been rapid progress in understanding how many drugs and micronutrients (e.g., vitamins) are transferred across the choroid plexus (CP), the main transport locus of the blood–cerebrospinal fluid (CSF) barrier, and the renal tubular epithelial cells. In many cases, these molecules are transported by separate, specific carriers or receptors on the apical and/or basal side of the CP or renal epithelial cells. This commentary focuses on four micronutrient transport systems in CP (ascorbic acid, folate, inositol, and riboflavin), all of which have been recently cloned, expressed and for which knockout mice models were developed and transporter localization studies performed. Also reviewed is the recently cloned uric acid transport system in human kidney in which there exists a human “knockout” model. The implications of these transport systems for drug therapy of central nervous system and renal disorders are discussed, especially with regard to methods to circumvent the blood–brain and blood–CSF barriers to deliver drugs to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Davson and M. B. Segal. Physiology of the CSF and Blood–Brain Barriers, CRC, Boca Raton, 1996.

    Google Scholar 

  2. R. Spector and C. E. Johanson. The mammalian choroid plexus: structure, development and function. Sci.Am. 261:68–74 (1989).

    CAS  PubMed  Google Scholar 

  3. R. Spector. Drug transport in the mammalian central nervous system: multiple complex systems. Pharmacology60:58–73 (2000).

    CAS  PubMed  Google Scholar 

  4. D. E. Smith, C. E. Johanson, and R. F. Keep. Peptide and peptide analog transport systems at the blood–CSF barrier. In Y. Sugiyama and J-F. Ghersi-Egea (eds.), Drug Transfer in the Choroid Plexus. Multiplicities and Substrate Specificities of Transporters, Adv. Drug Deliv. Rev., 56:1765–1791 (2004).

  5. C. E. Johanson. The choroid plexus–CSF nexus: gateway to the brain. In P. M. Conn (ed.), Neuroscience in Medicine, 2nd ed., Humana, Totowa, New Jersey, 2003, pp. 165–195.

    Google Scholar 

  6. R. Spector. Megavitamin therapy and the central nervous system. In M. H. Briggs (ed.), Vitamins in Human Biology andMedicine, CRC, Boca Raton, Florida, 1981, pp. 138–156.

    Google Scholar 

  7. R. Spector. Vitamin homeostasis in the central nervous system. N. Engl. J. Med. 296:1393–1398 (1977) (Seminar in Medicine).

    CAS  PubMed  Google Scholar 

  8. K. M. Giacomini and Y. Sugiyama. Membrane transporters and drug response. In L. L. Brunton, J. S. Lazo, and K. L. Parker (eds.), Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw Hill, New York, 2005, pp. 41–70.

    Google Scholar 

  9. R. Spector. Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J. Neurochem. 53:1667–1674 (1989).

    CAS  PubMed  Google Scholar 

  10. Y. Nagata, H. Kusuhara, H. Endou, and Y. Sugiyama. Expression and functional characterization of rat organic anion transporter 3 (rOAT 3) in the choroid plexus. Mol. Pharm. 61:982–988 (2002).

    CAS  Google Scholar 

  11. W. M. Pardridge, Introduction to the Blood–Brain Barrier. Cambridge University Press, UK, 1998.

    Google Scholar 

  12. J. B. Pritchard and D. S. Miller. Expression systems for cloned xenobiotic transporters. Toxicol. Appl. Pharmacol. 204:256–262 (2005).

    CAS  PubMed  Google Scholar 

  13. M. E. Rice. Ascorbate regulation and its neuroprotective role in brain. TrendsNeurosci. 23:209–216 (2000).

    CAS  PubMed  Google Scholar 

  14. L. Hammarstrom. Autoradiographic studies on the distribution of 14C-labelled ascorbic acid and dehydroascorbic acid. Acta Physiol. Scand.70(suppl. 289):1–79 (1966).

    Google Scholar 

  15. R. Spector. Penetration of ascorbic acid from cerebrospinal fluid into brain. Exp. Neurol. 72:645–653 (1981).

    CAS  PubMed  Google Scholar 

  16. A. Hakvoort, M. Haselbach, and H. J. Galla. Active transport properties of porcine choroid plexus cells in culture. Brain Res. 795:247–256 (1998).

    CAS  PubMed  Google Scholar 

  17. S. Angelow, P. Zeni, and H. J. Galla. Usefulness and limitation of primary cultured porcine choroid plexus epithelial cells as an in vitro model to study drug transport at the blood–CSF barrier. Adv. Drug Del. Rev. 56:1859–1873 (2004).

    CAS  Google Scholar 

  18. R. Spector and A. V. Lorenzo. The specificity of ascorbic acid transport system of the central nervous system. Am. J. Physiol. 226:1468–1473 (1974).

    CAS  PubMed  Google Scholar 

  19. D. K. C. Lam and P. M. Daniel. The influx of ascorbic acid into the rat's brain. Quart. J. Exp. Physiol. 71:483–489 (1986).

    CAS  Google Scholar 

  20. D. B. Agus, S. S. Bambhir, W. M. Pardridge, et al. Vitamin C crosses the blood–brain barrier in the oxidized form through the glucose transporters. J. Clin. Invest. 100:2842–2848 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. H. Tsubaguchi, T. Tokui, B. Mackenzie, et al. A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature399:70–75 (1999).

    Google Scholar 

  22. A. Astuya, T. Caprile, M. Castro, et al. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. J. Neurosci. Res. 79:146–156 (2005).

    CAS  PubMed  Google Scholar 

  23. M. D. L. A. Garcia, K. Salazar, C. Millan, et al. Sodium vitamin C cotransporter SVCT 2 is expressed in hypothalamic glial cells. Glia50:32–47 (2005).

    Google Scholar 

  24. S. Sotiriou, S. Gispert, J. Cheung, et al. Ascorbic acid slc 23 a1 is essential for vitamin C transport into brain and for perinatal survival. Nat. Med. 8:514–517 (2002).

    CAS  PubMed  Google Scholar 

  25. J. Hung, D. B. Agus, C. J. Winfree, et al. Dehydorascorbic acid, a blood–brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. PNAS98:11720–11724 (2001).

    Google Scholar 

  26. R. Spector and A. V. Lorenzo. Folate transport by the choroid plexus in vitro. Science187:540–542 (1975).

    CAS  PubMed  Google Scholar 

  27. R. Spector and A. V. Lorenzo. Folate transport in the central nervous system. Am. J. Physiol.229:777–782 (1975).

    CAS  PubMed  Google Scholar 

  28. S. A. Suleiman and R. Spector. Purification and characterization of a folate binding protein from porcine choroid plexus. Arch. Biochem. Biophys.208:87–94 (1981).

    CAS  PubMed  Google Scholar 

  29. Y. Wang, R. Zhao, R. G. Russel, and I. D. Goldman. Localization of the murine reduced folate carrier as assessed by immunohistochemical analysis. Biochim. Biophys. Acta1513:49–54 (2001).

    CAS  PubMed  Google Scholar 

  30. V. T. Ramaekers, S. I. Hansen, J. Holm, et al. Reduced folate transport to the CNS in female Rett patients. Neurology61:506–515 (2003).

    CAS  PubMed  Google Scholar 

  31. R. Spector. Development of the vitamin transport system in choroid plexus and brain. Neurochemistry33:1317–1319 (1979).

    CAS  Google Scholar 

  32. B. A. Kamen and A. K. Smith. A review of folate receptor alpha and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv. Drug Del. Rev.56:1085–1097 (2004).

    CAS  Google Scholar 

  33. D. Wa and W. M. Pardridge. Blood–brain transport of reduced folic acid. Pharm. Res.16:415–419 (1999).

    Google Scholar 

  34. V. T. Ramaekers and N. Blau. Cerebral folate deficiency. Dev. Med. Child Neurol.46:843–851 (2004).

    PubMed  Google Scholar 

  35. J. A. Piedrahita, B. Oetama, G. D. Bennett, et al. Mice lacking the folic-acid binding protein Folbp1 are defective in early embryonic development. Nat. Genet.23:228–232 (1999).

    CAS  PubMed  Google Scholar 

  36. V. T. Ramaekers, S. P. Rothenberg, J. M. Sequeira, et al. Auto antibodies to folate receptors in the cerebral folate deficiency syndrome. N. Engl. J. Med.352:1985–1991 (2005).

    CAS  PubMed  Google Scholar 

  37. S. Xiao, D. K. Hansen, E. T. M. Horsley, et al. Maternal folate deficiency results in selective upregulation of folate receptors and heterogenous nuclear ribonucleoprotein-E1 associated with multiple subtle aberrations in fetal tissues. Birth Defects Res. (Part A): Clin. and Mol Teratol.73:6–28 (2005).

    CAS  Google Scholar 

  38. S. K. Fischer, J. E. Novak, and B. W. Agranoff. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J. Neurochem.82:736–754 (2002).

    Google Scholar 

  39. R. Spector and A. V. Lorenzo. Myo-inosital transport in central nervous system. Am. J. Physiol.228:1510–1518 (1975).

    CAS  PubMed  Google Scholar 

  40. R. Spector and A. V. Lorenzo. The origin of myo-inositol in brain, cerebrospinal fluid and choroid plexus. J. Neurochem.25:353–354 (1975).

    CAS  PubMed  Google Scholar 

  41. R. Spector. The specificity and sulfhydryl sensitivity of the inositol transport system of the central nervous system. J. Neurochem.27:229–236 (1976).

    CAS  PubMed  Google Scholar 

  42. R. Spector. Myo-inositol transport through the blood–brain barrier. Neurochem. Res.13:785–787 (1988).

    CAS  PubMed  Google Scholar 

  43. R. Spector. Inositol accumulation by brain slices in vitro. J. Neurochem.27:1273–1276 (1976).

    CAS  PubMed  Google Scholar 

  44. I. Inoue, S. Shimoda, Y. Minami, et al. Cellular localization of Na+/myo-inositol 1 co-transporter in RNA in the rat brain. NeuroReport7:1195–1198 (1996).

    CAS  PubMed  Google Scholar 

  45. M. J. Coady, B Wallendorff, D. G. Gagnon, and J. Y. Lapointe. Identification of a novel Na+/myo-inositol cotransporter. J. Biol. Chem.277:35219–35224 (2002).

    CAS  PubMed  Google Scholar 

  46. Y. Minami, K. Inoue, S. Shimada, et al. Rapid and transient upregulation of Na+/myo-inositol cotransporter transcription in the brain of acute hypernatremic rats. Mol. Brain Res.40:64–70 (1996).

    CAS  PubMed  Google Scholar 

  47. G. T. Berry, S. Wu, R. Buccafusca, et al. Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. J. Biol. Chem.278:18297–18302 (2003).

    CAS  PubMed  Google Scholar 

  48. J. F. L. Chau, M. K. Lee, J. W. Law, et al. Sodium myo-inositol cotransporter-1 is essential for the development and function of the peripheral nerves. FASEB J. 19:1887–1889 (2005).

    CAS  PubMed  Google Scholar 

  49. C. M. Moore, J. L. Breeze, T. J. Kukes, et al. Effects of myo-inositol ingestion on human brain myo-inositol levels: a proton magnetic resonance spectroscopic study. Biol. Psychiatry45:1197–1202 (1999).

    CAS  PubMed  Google Scholar 

  50. G. T. Barry, R. Buccafusca, J. J. Greer, and E. Eccleston. Phosphoinositide deficiency due to inositol depletion is not a mechanism of lithium action in brain. Mol. Genet. Metab. 82:87–92 (2004).

    Google Scholar 

  51. J. R. Alack. Inositol monophosphate inhibitors—lithium mimetics? Med. Res. Rev. 17:215–224 (1997).

    Google Scholar 

  52. S. E. Bresler, V. M. Bresler, E. N. Kazbekov, A. A. Nikitorov, and N. N. Vasilieva. On the active transport of organic acids fluorescein in the choroid plexus of the rabbit. Biochim. Biophys. Acta. 550:110–119 (1979).

    CAS  PubMed  Google Scholar 

  53. R. Spector. Riboflavin transport in the central nervous system: characterization and effects of drugs. J. Clin. Invest. 66:821–831 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. R. Spector and B. Boose. Active transport of riboflavin by the isolated choroid plexus in vitro. J. Biol. Chem. 254:10286–10289 (1979).

    CAS  PubMed  Google Scholar 

  55. R. Spector. Riboflavin homeostasis in the central nervous system. J. Neurochem. 35:202–209 (1980).

    CAS  PubMed  Google Scholar 

  56. R. Spector. Riboflavin accumulation by rabbit brain slices in vitro. J. Neurochem. 34:1768–1771 (1980).

    CAS  PubMed  Google Scholar 

  57. R. Spector. Lumiflavin and lumichrome transport in the central nervous system. J. Neurochem. 36:1186–1191 (1981).

    CAS  PubMed  Google Scholar 

  58. R. Spector and A. V. Lorenzo. Inhibition of penicillin transport from the cerebrospinal fluid after intracranial inoculation of bacteria. J. Clin. Invest. 54:316–325 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. D. H. Sweet, D. S. Miller, J. B. Pritchard, Y Fiyuvare, D. R. Brier, and S. K. Nigam. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat 3 slc22a8) knockout mice. J. Biol. Chem. 277:26934–26943 (2002).

    CAS  PubMed  Google Scholar 

  60. D. Sykes, D. H. Sweet, S. Lowes, S. K. Nigam, J. B. Pritchard, and D. S. Miller. Organic anion transport in choroid plexus from wild-type and organic anion transporter 3 (slc22a8)-null mice. Am. J. Physiol. 286:F972–F978 (2004).

    CAS  Google Scholar 

  61. R. Kikuchi, H. Kusuhara, D. Sugiyama, and Y. Sugiyama. Contribution of organic anion transporter 3 (slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood–brain barrier. J. Pharmacol. Exp. Ther. 306:51–58 (2003).

    CAS  PubMed  Google Scholar 

  62. C. M. Breen, D. B. Sykes, G. Fricker, and D. S. Miller. Confocal imaging of organic anion transport in intact rat choroid plexus. Am. J. Physiol. 282:F877–F885 (2002).

    CAS  Google Scholar 

  63. S. M. Ocheltree, H. Shen, Y. Hu, J. Xiang, R. F. Keep, and D. E. Smith. Mechanisms of cefadroxil uptake in choroid plexus: studies in wild-type and PEPT 2 knock-out mice. J. Pharmacol. Exp. Ther. 308:462–467 (2004).

    CAS  PubMed  Google Scholar 

  64. D. S. Miller. Confocal imaging of xenobiotic transport across the choroid plexus. Adv. Drug Del. Rev. 56:1811–1824 (2004).

    CAS  Google Scholar 

  65. W. J. Jusko and G. Levy. Absorption, protein binding and elimination of riboflavin. In Rivlin (ed.), Riboflavin, Plenum, New York, 1975, pp. 100–152.

    Google Scholar 

  66. R. Spector. Riboflavin transport by rabbit kidney slices: characterization and relation of cyclic organic acid transport. J. Pharmacol. Exp. Ther. 221:394–398 (1982).

    CAS  PubMed  Google Scholar 

  67. A. Enomoto, H. Kimura, A. Chairougdue, et al. Molecular identification of a renal-urate exchanger that regulates blood urate levels. Nature417:447–451 (2002).

    CAS  PubMed  Google Scholar 

  68. K. Ichida, M. Hosoyamada, I. Hisatome, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan—influence of URAT 1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15:164–173 (2004).

    PubMed  Google Scholar 

  69. D. Kang, L. Han, X. Ouyang, A. Kahn, et al. Uric acid causes vascular smooth muscle cell proliferation by entering cells via a functional urate transporter. Am. J. Nephrol. 25:425–433 (2005).

    CAS  PubMed  Google Scholar 

  70. C. Johanson, J. Duncan, E. Stopa, and A. Baird. Enhanced prospects for drug delivery and brain targeting by the choroid plexus–CSF route. Pharm. Res. 22:1011–1037 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Johanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spector, R., Johanson, C. Micronutrient and Urate Transport in Choroid Plexus and Kidney: Implications for Drug Therapy. Pharm Res 23, 2515–2524 (2006). https://doi.org/10.1007/s11095-006-9091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9091-5

Key words

Navigation